Читаем Физика учит новый язык. Лейбниц. Анализ бесконечно малых полностью

Через несколько лет шотландский математик Джеймс Грегори (1638-1675) первым в Европе открыл этот ряд, о нем узнал Лейбниц и воспользовался им для выведения первого ряда для числа , недостатком которого было то, что он очень медленно приближается к истинному значению. Он известен как ряд Грегори — Лейбница, хотя другие авторы сегодня его называют рядом Мадхавы — Лейбница:

/4 = 1 - 1/3 + 1/5 + 1/7 + ... + (-1)n/(2n+1) + ...

И Ньютон, и Лейбниц также вычисляли ряды степеней других тригонометрических функций.

Вычисление числа k было постоянным предметом поиска математиков всех времен. Это число определяется как отношение между длиной окружности и ее диаметром. Многие пытались найти наибольшее количество десятичных знаков данного числа, и одним из использованных методов был метод числовых рядов. Он подразумевает, что по мере того, как вычисляется больше членов, появляется большее количество точных знаков после запятой.

Ряды не всегда были суммами. Например, математик Франсуа Виет (1540-1603), один из создателей современной алгебры, представил первое бесконечное произведение, приближающееся к значению , таким образом:

= 2 • 2/2 • 2/(2+2) • 2/(2+(2+2)) • 2/(2+(2+(2+2)))

Сам Грегори, в свою очередь, пытаясь вычислить площадь круга, пришел к другому выражению для вычисления я:

/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)

XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.



ЛЕЙБНИЦ И БЕСКОНЕЧНЫЕ РЯДЫ

Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a0а1а2а3... an, то возьмем разности b1= a1-a0; b2= а21; b3= а32; ..., и тогда нулевая сумма а00 + а1 - а1 + а2 - а2 +...+ an-1 - an-1 + + an - an = а0 + b1 + b2 +...+ bn - an = 0, откуда следует, что сумма разностей равна:

b1 + b2 + b3 + ... + bn = an - a0

Лейбниц утверждал, что его метод разностей может быть применен для нахождения суммы любого ряда чисел, построенного в соответствии с правилом, и даже для бесконечных рядов — при условии, что они сходятся.

На той же встрече Гюйгенс задал Лейбницу задачу, которую он сам уже решил, чтобы тот проверил свой метод, — найти сумму чисел, обратных треугольным, то есть следующий ряд:

1 + 1/3 + 1/6 + 1/10 + ...

Лейбниц разделил на два каждый член, разложив дроби на разность двух:

1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1

следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).

Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:

(-1)n • an = a0 - a1 + a2 - a3 + a4 - ... при an >= 0.

n=0

Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.

Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов — наоборот.

Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде:

(-1)n = 1-1+1-1+1-1+1-1+...

n=1

Если взять четное число членов, частичная сумма равна 0, в то время как если взять нечетное число, частичная сумма равна 1. Лейбниц в итоге присвоил этой сумме значение 1/2.

Простое рассуждение для получения этого решения следующее:

5=1-1 + 1-1 + 1-1 + 1 -... = 1 - (1-1 + 1-1 + 1-1 +...) = 1-S,

откуда после упрощения получается 2S = 1, и, следовательно, искомая сумма равна S = 1/2.

Во время визита к Роберту Бойлю Пелл указал Лейбницу на то, что математик Франсуа Рейно уже опубликовал общий метод прерывания рядов с помощью разностей. Ученый ознакомился с данным исследованием, выяснил, что его метод отличается от метода Рейно, и написал свою работу для представления в Королевском обществе. Однако эта работа была встречена довольно холодно, и его даже обвинили в плагиате. Сам Лейбниц позже признал, что там действительно не содержалось никакого нового результата, а вся изюминка заключалась в новом представленном методе.

Провал работы заставил ученого понять, что ему очень не хватает математических сведений: он не знал о многом из того, что уже было опубликовано. Поэтому Лейбниц потратил почти год на самосовершенствование в этой области.



НОВОЕ ЗАНЯТИЕ

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука