Древнегреческая алгебра добилась огромных успехов благодаря Диофанту. Его "Арифметика" состоит из серии задач с решениями и необходимыми разъяснениями. Это сочинение было написано для обучения алгебре. Здесь мы встречаем задачи, которые, кажется, взяты из современного учебника средней школы. Например: "Найти два числа, сумма которых равна 20, а произведение — 96". Способ, которым ее решает Диофант, если использовать нашу современную терминологию, выглядит следующим образом. Сумма равна 20, а произведение 96; пусть 2х есть разность между наибольшим и наименьшим числом; следовательно, оба числа равны 10 + х и 10 - х, а их произведение (10+х)(10-х) = 100 - х2
= 96, х2 = 4. Следовательно, х = 2, поскольку ученые Древней Греции не учитывали отрицательных решений. Искомые числа — 12 и 8.К сожалению, большая часть наследия греческой культуры исчезла, уничтоженная христианами. Тысячи рукописей были сожжены, и большая часть научного знания пропала. В течение целого тысячелетия в геометрию не было привнесено ничего нового. Практически до 1600 года в этой области не происходило никакого развития.
В середине XVI века по Европе начали распространяться латинские переводы сохраненных арабскими учеными основных греческих текстов, которые были с энтузиазмом приняты математиками того времени. Началось тщательное изучение решений задач и доказательств, найденных древнегреческими учеными. Восхищение математиков XVI и XVII веков знаниями греков было бесспорным.
Геометрия в течение тысячелетия стояла на месте, но алгебра немного развивалась, что сделало возможным создание математического анализа. Алгебра все еще была тесно связана с геометрией. Математик Мухаммад ибн Муса Аль-Хорезми (780- 850) работал в Багдаде. От его имени происходит слово алгоритм. Также благодаря ему появилось слово алгебра, поэтому многие авторы считают Аль-Хорезми отцом алгебры. Однако метод, которым он пользовался для решения своих уравнений, оставался в основном геометрическим.
Одним из наиболее известных ученых XVI века, внесших колоссальный вклад в развитие алгебры, был уже ранее упомянутый Франсуа Виет. Он активно работал над алгебраическими символами, пользуясь буквами для обозначения математических параметров: для неизвестных параметров он использовал гласные, а для всех прочих — согласные. В своих работах Виет давал сначала решение задачи в общем виде и только потом приводил числовой пример. Так он перешел от изучения частных проблем к развитию общих методов, что было очень важно для прогресса анализа бесконечно малых. Именно его работа обеспечила дорогу к появлению аналитической геометрии.
Символические величины, использованные Виетом, могут рассматриваться как длины отрезков или меры углов, а символические операции могут считаться, в свою очередь, геометрическими построениями. Следовательно, полученные решения могут относиться как к числовым, так и к геометрическим задачам.
В эпоху Возрождения искусство и литература получили значительное развитие, в то время как наука оказалась несколько подзабыта. Одним из создателей научного метода считается Фрэнсис Бэкон. В его сочинении, вдохновившем многие научные сообщества, "Новая Атлантида", правители были учеными, которые накапливали научные и технологические знания. Бэкон жаловался на то, что общество предпочитает гуманитарные и метафизические дисциплины, при этом пренебрегая работой ученого в лаборатории. А веком позже уже появилось большое количество работ с экспериментальными результатами.
Отношение к математике с середины XVI века радикально изменилось по сравнению с отношением к ней в Древней Греции. Появились новые задачи, происходящие из других наук и практических потребностей. Математика повернулась лицом к миру физики. Постепенно наука все больше основывалась на математических принципах, а математика все больше базировалась на других науках для своего дальнейшего развития.
Математики того времени были великими учеными и развивали свои знания во многих различных областях. Декарт говорил, что математика является наукой о порядке и мере и включает в себя, кроме алгебры и геометрии, астрономию, музыку, оптику и механику. Столпами механики Ньютона были сила и движение. Двумя главными моторами, двигавшими науку вперед, были астрономия и механика, развиваемые Галилеем и Кеплером. Например, конические сечения применяли к разным наукам: эллипсы — это траектории планет, а параболы — траектории снарядов.
Греческая строгость доказательства была оставлена в пользу эмпиризма. Для Галилея имели одинаковое значение как дедуктивная, так и экспериментальная части. В отличие от древнегреческих ученых он был больше заинтересован в получении новых результатов, чем в их безупречном обосновании. Время на строгую формулировку найдется и потом, поскольку самым важным является открытие само по себе. Убежденность в том, что полученные результаты затем можно доказать методами древнегреческих ученых, выражена в следующем высказывании Гюйгенса: