Читаем Физика учит новый язык. Лейбниц. Анализ бесконечно малых полностью

Древнегреческая алгебра добилась огромных успехов благодаря Диофанту. Его "Арифметика" состоит из серии задач с решениями и необходимыми разъяснениями. Это сочинение было написано для обучения алгебре. Здесь мы встречаем задачи, которые, кажется, взяты из современного учебника средней школы. Например: "Найти два числа, сумма которых равна 20, а произведение — 96". Способ, которым ее решает Диофант, если использовать нашу современную терминологию, выглядит следующим образом. Сумма равна 20, а произведение 96; пусть 2х есть разность между наибольшим и наименьшим числом; следовательно, оба числа равны 10 + х и 10 - х, а их произведение (10+х)(10-х) = 100 - х2 = 96, х2 = 4. Следовательно, х = 2, поскольку ученые Древней Греции не учитывали отрицательных решений. Искомые числа — 12 и 8.

К сожалению, большая часть наследия греческой культуры исчезла, уничтоженная христианами. Тысячи рукописей были сожжены, и большая часть научного знания пропала. В течение целого тысячелетия в геометрию не было привнесено ничего нового. Практически до 1600 года в этой области не происходило никакого развития.

В середине XVI века по Европе начали распространяться латинские переводы сохраненных арабскими учеными основных греческих текстов, которые были с энтузиазмом приняты математиками того времени. Началось тщательное изучение решений задач и доказательств, найденных древнегреческими учеными. Восхищение математиков XVI и XVII веков знаниями греков было бесспорным.



РАЗВИТИЕ АЛГЕБРЫ

Геометрия в течение тысячелетия стояла на месте, но алгебра немного развивалась, что сделало возможным создание математического анализа. Алгебра все еще была тесно связана с геометрией. Математик Мухаммад ибн Муса Аль-Хорезми (780- 850) работал в Багдаде. От его имени происходит слово алгоритм. Также благодаря ему появилось слово алгебра, поэтому многие авторы считают Аль-Хорезми отцом алгебры. Однако метод, которым он пользовался для решения своих уравнений, оставался в основном геометрическим.

Одним из наиболее известных ученых XVI века, внесших колоссальный вклад в развитие алгебры, был уже ранее упомянутый Франсуа Виет. Он активно работал над алгебраическими символами, пользуясь буквами для обозначения математических параметров: для неизвестных параметров он использовал гласные, а для всех прочих — согласные. В своих работах Виет давал сначала решение задачи в общем виде и только потом приводил числовой пример. Так он перешел от изучения частных проблем к развитию общих методов, что было очень важно для прогресса анализа бесконечно малых. Именно его работа обеспечила дорогу к появлению аналитической геометрии.

Символические величины, использованные Виетом, могут рассматриваться как длины отрезков или меры углов, а символические операции могут считаться, в свою очередь, геометрическими построениями. Следовательно, полученные решения могут относиться как к числовым, так и к геометрическим задачам.



ИЗМЕНЕНИЕ ПОДХОДА

В эпоху Возрождения искусство и литература получили значительное развитие, в то время как наука оказалась несколько подзабыта. Одним из создателей научного метода считается Фрэнсис Бэкон. В его сочинении, вдохновившем многие научные сообщества, "Новая Атлантида", правители были учеными, которые накапливали научные и технологические знания. Бэкон жаловался на то, что общество предпочитает гуманитарные и метафизические дисциплины, при этом пренебрегая работой ученого в лаборатории. А веком позже уже появилось большое количество работ с экспериментальными результатами.

Отношение к математике с середины XVI века радикально изменилось по сравнению с отношением к ней в Древней Греции. Появились новые задачи, происходящие из других наук и практических потребностей. Математика повернулась лицом к миру физики. Постепенно наука все больше основывалась на математических принципах, а математика все больше базировалась на других науках для своего дальнейшего развития.

Математики того времени были великими учеными и развивали свои знания во многих различных областях. Декарт говорил, что математика является наукой о порядке и мере и включает в себя, кроме алгебры и геометрии, астрономию, музыку, оптику и механику. Столпами механики Ньютона были сила и движение. Двумя главными моторами, двигавшими науку вперед, были астрономия и механика, развиваемые Галилеем и Кеплером. Например, конические сечения применяли к разным наукам: эллипсы — это траектории планет, а параболы — траектории снарядов.

Греческая строгость доказательства была оставлена в пользу эмпиризма. Для Галилея имели одинаковое значение как дедуктивная, так и экспериментальная части. В отличие от древнегреческих ученых он был больше заинтересован в получении новых результатов, чем в их безупречном обосновании. Время на строгую формулировку найдется и потом, поскольку самым важным является открытие само по себе. Убежденность в том, что полученные результаты затем можно доказать методами древнегреческих ученых, выражена в следующем высказывании Гюйгенса:

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука