Читаем Физика в быту полностью

Оказывается, любое периодическое движение чисто математически может быть представлено как сумма гармонических колебаний с кратными частотами, то есть с частотами, полученными умножением некоторой основной частоты f0 на целые числа: 2, 3, 4… (это известная математикам теорема Фурье). Наименьшая частота этого ряда (f0) называется основной, а колебание с этой частотой – основным колебанием или первой гармоникой. Основная частота определяется периодом исходного движения. Колебания с кратными частотами 2f0, 3f0, 4f0… называют гармоническими обертонами или просто гармониками (второй, третьей, четвёртой и так далее до бесконечности). Многообразие сочетаний различных амплитуд (и фаз) гармоник обеспечивает все возможные формы результирующего колебания.

Процедура выделения простых гармоник из сложного колебания называется спектральным (или гармоническим) анализом. На рисунке 3 приведён пример разложения колебания на гармоники (в данном примере понадобилось всего две гармоники с частотами f0 и 2f0). Такой анализ можно произвести математически, а можно разложить звук на гармоники с помощью прибора – спектроанализатора.

Нарисуем график, состоящий из вертикальных отрезков: высоты отрезков соответствуют амплитудам гармоник, их положение на горизонтальной оси – частотам. Такая картинка изображает спектр колебания (спектр звука). Итак, спектр звука показывает, гармоники (обертоны) каких частот и с какими амплитудами присутствуют в данном звуке.


Рис. 4. Спектр колебания, представленного на рис. 3


Основная частота определяет высоту тона, а все остальные (высшие) гармоники создают неповторимый тембр звука.


Основная частота для самого низкого мужского голоса (бас) составляет 80 Гц. Основная частота для самого высокого женского голоса (сопрано) достигает 1050 Гц. Обертоны же могут простираться до частот порядка 50 тысяч герц, выходя за пределы частотного диапазона слухового восприятия.

Основная частота звуков, издаваемых музыкальными инструментами, лежит в диапазоне 40–5000 Гц.

Нота «ля» первой октавы имеет частоту 440 Гц.


Как правило, первая гармоника (основная частота) присутствует в музыкальном звуке с наибольшей амплитудой. Но это не обязательно так. В спектре флейты, фагота, корнета и трубы некоторые высшие гармоники столь же сильны, как и основная частота, или даже сильнее. Но ухо не проведёшь! Оно безошибочно распознаёт основную частоту, даже если её вовсе нет в спектре, а присутствуют лишь гармоники 2f0, 3f0, 4f0,… Так, например, музыкальный звук, состоящий из набора частот 200, 300, 400 и 500 Гц, воспринимается как звук высотой 100 Гц, хотя этой частоты нет в наборе. Другими словами, мы слышим отсутствующий звук! Это связано с особенностями человеческого уха, которое вносит свои искажения. Так, при возбуждении его двумя частотами f1 и f2 в нём возбуждаются также суммарная и разностная частоты f1+f2 и f1f2 вместе со всеми их гармониками. Чем больше амплитуда исходных колебаний, тем больше слышны «лишние» частоты – их называют субъективными тонами. В нашем примере, когда в спектре объективно присутствуют частоты 200, 300, 400 и 500 Гц, но нет основного тона 100 Гц, в ухе возникают колебания разностных частот 300–200=100 (Гц), 400–300=100 (Гц) и т. д., то есть колебания отсутствующего основного тона. Для любого музыкального звука основная частота эффективно усиливается разностными частотами и обязательно будет опознана ухом.

Бесконечное разнообразие спектров музыкальных звуков, то есть сочетаний частот и амплитуд гармоник, объясняет разнообразие тембров звучания. В природе не существует «простых» звуков, тембрально не окрашенных (состоящих только из колебаний одного основного тона). Такой звук можно искусственно синтезировать, преобразовав электромагнитное колебание одной частоты в звуковое с помощью так называемого звукового генератора, причём ухо воспринимает этот звук как весьма противный. Более того, человеку труднее опознать высоту тона «чистого» звука, чем звука с тембральным окрасом, и мы уже поняли почему. Из инструментальных звуков наиболее «чистым», почти без примеси гармоник, является звук камертона.

Если в звуке много гармоник, то он воспринимается «богатым». Так, в спектре голоса хорошего оперного певца гораздо больше обертонов, чем в спектре любителя, поющего ту же арию.

Но если в спектре слишком много гармоник, то звук кажется «грязным», а если там много верхних гармоник – то и резким, крикливым, неприятным.


Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука