2) увеличением частоты нервных импульсов,
в результате чего происходит переход от слабых одиночных сокращений к сильным тетаническим сокращениям мышечных волокон;3) увеличением синхронизации ДЕ,
при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех активных мышечных волокон.Существенное значение имеют механические условия работы мышцы – точка приложения ее силы и точка приложения сопротивления (поднимаемого груза). Например, при сгибании в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга сухожилий – 500 кг.
Между силой и скоростью сокращения мышцы существует определенное соотношение, имеющее вид гиперболы (соотношение сила – скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения,
и наоборот, с нарастанием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мышечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и соответственно потребляется больше энергии АТФ. Во время сокращения мышечных волокон в 1 с происходит примерно от 5 до 50 циклов прикрепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).5.5. Режимы работы мышцы
Механическая работа
(А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А = P × h (им), При регистрации работы изолированной мышцы лягушки видно, что чем больше величина груза, тем меньше высота, на которую его поднимает мышца. Различают три режима работы мышцы: изотонический, изометрический и ауксотонический.Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р
= 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца – мышца языка. (В современной литературе также встречается термин изотонический режим по отношению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизменным, но в этом случае механическая работа мышцы не равна нулю, т. е. она совершает внешнюю работу.)Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h =
0 и соответственно механическая работа тоже равна нулю (А = 0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы. В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологическая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.Ауксотонический режим (смешанный режим) характеризуется изменением длины и тонуса мышцы, при сокращении которой происходит перемещение груза. В этом случае совершается механическая работа мышцы (А = P × h).
Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, действующую на тело человека. Различают две разновидности этого режима работы мышц: преодолевающий(концентрический) и уступающий(эксцентрический) режим.Изучение работы мышцы с различными нагрузками и в разном темпе позволило вывести закон средних нагрузок и среднего темпа движений: максимальную механическую работу мышца совершает при средних нагрузках и среднем темпе движений.
При высоких скоростях сокращения мышцы часть ее энергии тратится на преодоление сопротивления (растущего внутреннего трения и вязкости мышцы), а при низких скоростях – на поддержание изометрического напряжения, которое также присутствует в этом случае для закрепления достигнутой длины мышцы в каждый данный момент времени.