Читаем Флатландия. Сферландия полностью

— Боюсь, что в дальнейшем ничем не смогу быть вам полезным, — огорченно заметил доктор Пункто. — Все по-прежнему выглядит весьма странно, и мы не располагаем ни малейшим намеком на то, в каком направлении надлежит искать объяснение.

— Без вас мы не сможем продвинуться ни на шаг, — заверил я его. — Прежде всего факты, объяснение придет потом. Мы на правильном пути, и я не сомневаюсь в том, что в конце концов нам удастся найти истину.

Мы сидели до поздней ночи, перебирая всевозможные гипотезы, но безрезультатно. Случай был поистине удивительный! Мы условились, что до следующей встречи, назначенной через три дня, каждый из нас попытается самостоятельно обдумать факты, после чего мы обменяемся идеями. Даже в том случае, если они окажутся неудачными, ошибка одного вполне может навести другого на верную мысль. Мы сердечно распрощались и расстались в полной уверенности, что совместными усилиями найдем выход из лабиринта.

Излишне говорить о том, что все три дня я провел в напряженных размышлениях. Ежедневно, прежде чем заснуть, я подолгу обдумывал проблему в надежде увидеть во сне какую-то подсказку, которая бы помогла ее решить или хотя бы направила поиски решения по правильному пути. Но все было напрасно. Днем я пытался выстроить в логической последовательности все известные мне факты, но каждый раз заходил в тупик: логика была бессильна найти ответ на столь «нелогичный» вопрос. Погруженный в свои размышления, я забыл обо всем на свете. Перед моим мысленным взором мелькали разнообразнейшие треугольники: большие и маленькие, правильные и неправильные, тупоугольные и остроугольные. Каждый из них я обходил по периметру, измерял все углы и принимался за следующий.

Мои близкие, не желая мне мешать, и не пытались пробудить меня от грез наяву. Но порой мне случалось ловить на себе их удивленные взгляды. Я не слышал, когда ко мне обращались, и в ответ неизменно задавал один и тот же сакраментальный вопрос: «Не могли бы вы указать треугольник, у которого сумма углов больше 180°?»

На утро третьего дня (того самого, на который у меня была назначена встреча с моим другом Пункто) ко мне в кабинет заглянул мой внук.

— Дедушка, — сказал он, — не знаю, смогу ли я помочь тебе, но вчера ты все время спрашивал о треугольнике, сумма углов которого больше 180°.

— Да, — подтвердил я, — и мне хорошо известно, о чем ты сейчас думаешь. Ты, естественно, считаешь, что твой старый дедушка выжил из ума. Я и сам прекрасно знаю, что мой вопрос звучит бессмысленно, но это, поверь мне, далеко не так. Я пытаюсь найти ответ на один вопрос и не знаю толком, математический он или философский, а для того чтобы найти ответ, мне необходимо своим глазом увидеть треугольник, у которого сумма углов была бы больше 180°.

— Дедушка, — воскликнул мой внук, — я прекрасно понимаю, что какой бы обычный треугольник мы ни взяли, сумма его углов не будет отличаться от суммы углов любого другого обычного треугольника. Треугольник, который нужен тебе, должен быть необычным треугольником, ибо лишь у необычного треугольника может быть необычное свойство. Если ты разрешишь, я нарисую один такой треугольник.

Хотя я не возлагал особых надежд на помощь со стороны представителя младшего поколения, тем не менее мой утвердительный ответ на его просьбу был продиктован не только любовью к внуку, но и любопытством: мне не терпелось узнать, что за необычный треугольник выдумал мой внук. Мальчик был очень польщен, увидев, что дед проявляет к его открытию искренний интерес, и тотчас же принялся рисовать «необычную» фигуру.

— Дедушка, вот треугольник, у которого сумма углов больше двух прямых углов.

Треугольник, нарисованный моим внуком. Сумма углов такого треугольника больше 180°.

— Да, но у твоего треугольника стороны не прямые, — возразил я.

— В этом и заключается мое открытие, — заявил юный геометр. — Нужно же было придумать нечто необычное для того, чтобы ответить на необычный вопрос.

— Что касается необычности, то тут мы квиты, — вынужден был признать я. — Но должен тебе сказать, что до сих пор мне никогда не приходилось видеть треугольники с кривыми сторонами.

— А ты в этом уверен? — спросил мальчуган.

Услышав вопрос внука, я даже рассердился. Мне ли не быть уверенным! Производя измерения на местности, мы даже не проводили стороны треугольников, а провешивали с помощью измерительных приборов прямые, вдоль которых свет распространялся от одного наблюдательного пункта к другому, а свет, как известно, распространяется вдоль прямых. На этом все и основано!

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги