Читаем Фокусы и игры полностью

Можете ли вы из шести спичек составить четыре равносторонних треугольника, притом так, чтобы ни одна сторона ни одного треугольника не была короче спички?

Попытайтесь. И не отчаивайтесь, если вам сразу не удастся решить задачу, она все-таки разрешима и даже без особых хитростей.

Не бойтесь также и подлога в условии задачи; ее надо понимать именно так, как сказано: составить из 6 спичек 4 равносторонних треугольника.

Решения задач 1-10

1. Удваивая или утраивая четное число, вы всегда получаете в результате четное число. Другое дело с числом нечетным: при удвоении оно становится четным, но при утроении остается нечетным. Гривенник, следовательно, дает четное число и при удвоении, и при утроении; напротив, 3 копейки дают четное только при удвоении; утроенные они дают число нечетное. Мы знаем также, что, складывая четное число с четным, получим четное, а складывая четное и нечетное, получим нечетное число.

Отсюда прямо вытекает, что если в нашем фокусе сумма оказалась четной, значит, три копейки были удвоены, а не утроены, т. е. находились в правой руке.

Если бы сумма была нечетной, это означало бы, что три копейки подверглись утроению и, следовательно, находились в левой руке.

2. Секрет фокуса кроется в том, что второй гость, приписывая к задуманному трехзначному числу то же число, умножил его, сам того не подозревая, на 1001. Действительно, если, например, первый гость задумал число


873,


то у второго гостя получилось число


873873.


Но ведь это не что иное, как


873000 + 873, т. е. 873 × 1001.


А число 1001 – замечательное число: оно получается от умножения 7, 11 и 13. Не удивительно поэтому, что хозяин уверенно предлагал делить такое шестизначное число сначала на 13, потом на 11 и на 7. Делить же последовательно на 13,11 и на 7 все равно, что делить на 13 × 11 × 7, т. е. на 1001.

Итак, второй гость умножил задуманное число на 1001, а три следующих гостя совместно разделили полученное им число на 1001. Вот почему в результате снова получилось задуманное число.


3. Этот курьезный фокус, в сущности, прост до смешного. Его разгадка ясна, например, уже из того, что если на последний вопрос вам ответит не туз, а валет, успех отгадывания будет не менее блестящим. Вообще, весь секрет фокуса вот в чем: сообразно с тем, что вам нужно, вы сосредоточиваете внимание собеседника либо на тех картах, которые им названы, либо же на тех, которые не названы. А так как задуманная карта непременно должна оказаться либо среди названных, либо среди не названных, то нисколько не удивительно, что собеседник ваш всегда «отгадывает» безошибочно.

Разумеется, когда вы проделаете этот фокус несколько раз подряд, уловка будет раскрыта. Но если не злоупотреблять недогадливостью партнера, то можно поставить в тупик самого находчивого человека.


4. Получаются два кольца, но продетые одно в другое, как звенья цепи (рис. 5).


Рис. 5. Кольцо, разрезанное вдоль средней линии


Если каждое из этих колец вы снова разрежете вдоль, то опять получите два кольца, продетые одно в другое.


5. При разрезании этого кольца вдоль получится, вопреки всем ожиданиям, не два кольца, а… одно, вдвое большее (рис. 6).

Наша изогнутая лента, обладающая столь удивительным свойством не разъединяться при разрезании, называется в геометрии поверхностью Мебиуса, по имени знаменитого математика прошлого века.

Другая замечательная особенность нашего кольца состоит в том, что у него нет «лицевой стороны» и «изнанки»: «лицо» ленты постепенно переходит в «изнанку», так что невозможно указать, где кончается одна сторона и начинается другая. Если вы пожелали, например, покрасить одну сторону нашей бумажной ленты, скажем, в красный цвет, а другую оставить некрашенной, то не смогли бы выполнить этого: у нашей ленты нет двух сторон, она односторонняя[1].


Рис. 6. Другое кольцо, разрезанное вдоль средней линии


Но вернемся к разрезанию нашей ленты. Если, разрезав ее вдоль и получив одно кольцо, вы разрежете новое кольцо, у вас получится на этот раз два кольца (рис. 7).

Однако разнять их вы не сможете: они запутаны одно в другом сложным гордиевым узлом, который можно рассечь только ножницами.


Рис. 7. Кольцо после двукратного разрезания


6. Нехитрый секрет беспроигрышной игры найти довольно легко, если попробовать сыграть партию с конца. Нетрудно видеть, что если предпоследним вашим ходом вы оставите партнеру на столе 5 спичек, то выигрыш обеспечен: партнер не может взять больше 4 спичек, и, следовательно, вы возьмете после него все остальные. Но как устроить, чтобы вы наверняка могли в предыдущий ход оставить на столе 5 спичек? Для этого необходимо, делая этот ход, оставить противнику ровно 10 спичек: тогда, сколько бы он ни взял, он не оставит вам меньше 6 – и вы всегда сможете оставить ему 5. Далее, как сделать так, чтобы партнеру пришлось брать из 10 спичек? Для этого надо в предыдущий ход оставить на столе 15 спичек.

Так, последовательно вычитая по 5, мы узнаем, что на столе надо оставить 20 спичек, а еще ранее 25 спичек и, наконец, в первый раз 30 спичек, т. е., начиная игру, взять 2 спички.

Перейти на страницу:

Похожие книги

500 научных фактов, которые вас удивят
500 научных фактов, которые вас удивят

Не зря ученые часто представляются нам чуть ли не сумасшедшими – им известны такие вещи, от которых волосы встают дыбом! Вы знали, что на Земле живет в 100 миллионов раз больше насекомых, чем людей, и что исследователи открывают 10000 новых видов насекомых каждый год? Или о том, что Солнечная система вращается вокруг центра нашей галактики со скоростью 273 километра в секунду? Или что за день кровь человека преодолевает более 19 километров по сосудам? А знали ли вы, что у неандертальцев объем мозга был значительно больше, чем у нас с вами? А о том, что у вас во рту постоянно находится около 100 миллионов микробов, которые питаются остатками пищи и омертвевшими клетками ротовой полости. Вы хотите узнать о природе, человеке, жизни животных, а также о нашей планете и о космосе факты, которые вызовут у вас шок? Откройте для себя научные факты, которыми будет интересно поделиться с друзьями и рассказать детям.

Виктор Сергеевич Карев

Развлечения / Прочая научная литература / Образование и наука