Читаем Forbidden Archeology: The Hidden History of the Human Race полностью

15 million years ago would have on current evolutionary doctrines.


Were the nineteenth-century scientists correct in their determination of the age of the site? Once more, the answer to this question is yes. Modern authorities (Romer 1966, p. 334) still place Sansan in the Middle Miocene, and Dicrocerus elegans is assigned to the Helvetian land mammal stage, which is considered Middle Miocene (Klein 1973, p. 566; Romer 1966, p. 334).


According to de Mortillet, Edouard Lartet, who also excavated fossils from Sansan and himself sent to Garrigou some of the bones on which Garrigou and Filhol founded their assertions, did not believe in human action on the bones. There were many broken bones at Sansan, and de Mortillet (1883, pp. 64 –65), in his usual fashion, said that some were broken at the time of fossilization, perhaps by dessication, and others afterward by movement of the strata.


Garrigou, however, maintained his conviction that the bones of Sansan had been broken by humans, in the course of extracting marrow. He made his case in 1871 at the meeting in Bologna, Italy, of the International Congress of Prehistoric Anthropology and Archeology. Garrigou (1873) first presented to the Congress a series of recent bones with undisputed marks of butchering and breaking. For comparison, he then presented bones of the small deer (Dicrocerus elegans) collected from Sansan. Among them was a humerus (the long bone of the upper forelimb) with a set of breaks exactly resembling those on a cow humerus from the Neolithic age. On its inner surface, the deer bone bore a profound incision, filled up with material from the stratum in which it was found.


Garrigou also displayed a radius (one of the bones of the lower forelimb) presenting a longitudinal fracture terminating at a right angle to the end of the bone. The fracture had the same patina as the rest of the bone, indicating the break was made when the bone was fresh, and the broken part had a surface so clean and sharp that it was impossible to see it as a natural geological effect. Subterranean pressure and shifting, if it had occurred, would have almost certainly damaged the perfectly intact edges and joint surfaces of the fractured long bone. In making these observations, Garrigou showed a good grasp of taphonomic principles. He also pointed out that the longitudinal fracture on the specimen he showed was identical to those encountered on hundreds of similar bones at Sansan.


Here we may note that longitudinal fracturing is characteristic of breaking bone for the purpose of obtaining marrow. Binford (1981, p. 162) stated: “Marrow is primarily contained in the medullary cavity of the body or shaft of long bones. This shaft is shaped like a cylinder, so access to the medullary cavity and hence the marrow is facilitated by collapsing or fracturing the cylinder longitudinally. Transversal fractures in the center of long-bone shafts do not provide ready access to the marrow.”


Garrigou also showed that many of the bone fragments had very fine and delicate striations such as found on broken bones of the Late Pleistocene. The marks could be indications of processing the bone for marrow breaking, as described by Binford: “The secret of controlled breakage of marrow bones is the removal of the periosteum [the sheath of connective tissue covering bone surfaces] in the area to be impacted. The Nunamiut invariably do this by scraping it back with the edge of a knife, a rough surface on a hammerstone, or almost any handy crude scraping tool. This means that longitudinal scratches and striations along the shafts of long bones are commonly produced when bones are prepared for cracking during marrow processing. Such marks are noted in Mousterian [Neanderthal] assemblages” (Binford 1981, p. 134).


Garrigou also displayed two metacarpals (foot bones), each with the smaller end removed by a direct blow. He pointed out that since flint tools had been found in the Miocene, one should not be astonished to find the effects of their usage. Food is the primary human need, so one should expect to observe signs of human attempts to secure it (Garrigou 1873, p. 137). In the next three chapters, we shall consider in detail the evidence for flint tools in the Miocene and Pliocene, but for now we should keep in mind that reports of such discoveries were very common at this time, and were accepted by many reputable scientists.


Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука