J. Reid Moir (1927, pp. 49–50) also wrote of bone tool finds from the Cromer Forest Bed: “During this year (1926) Mr. J. E. Sainty found upon the beach at Overstrand a piece of heavily mineralized bone which is evidently referable to the Cromer Forest Bed. . . . the bone is of a markedly implemental form; in fact, on the surface figured and at the butt-end, it exhibits flaking and hacking, which, judging from the experiments I carried out in shaping this material, I think has been intentionally produced. . . . Sir Arthur Keith, F.R.S. [Fellow of the Royal Society], who examined the specimen, has kindly given me the following opinion upon it: ‘There can be no doubt, I think, that your implement has been fashioned out of the lower jaw of the larger whalebone whales. None of the original surface of the bone is left; it has been removed by flaking.’ From the extreme fossilization of this specimen, I judge it to belong to the earliest Cromer Forest Bed deposit, and to be contemporary with the great flint implements found at that horizon. Remains of whales have been discovered in the Forest Bed and it was doubtless the skeleton of one of these that supplied the material from which this implement was made by one of the earliest Cromerian men.”
The most comprehensive recent study of the Cromer Forest Bed formation is by R. G. West. According to West (1980, p. 201), the oldest part of the Cromer Forest Bed is the Sheringham member. West identified the lower part of the Sheringham member, representing the base of the Cromer Forest Bed, with the Pre-Pastonian cold stage of East Anglia ( Table 2.1, p. 78).
Even after much study, West was not able to give a conclusive date for the Pre-Pastonian. He suggested that the lowest level of the Pre-Pastonian, might be equivalent to the basal part of the northwestern European cold stage called the Erburonian. This would give the Pre-Pastonian cold stage a maximum age of about 1.75 million years (West 1980, fig. 54). But Nilsson (1983, p. 308) puts the base of the Erburonian at 1.5 million years.
According to West (1980, fig. 54), the Pre-Pastonian cold stage of East Anglia might also be identified, on paleomagnetic grounds, with the Menapian glaciation of northwestern Europe at .8–.9 million years. The Pre-Pastonian might also be identified with the early part of the northwestern European Cromer complex, a series of alternating glacials and interglacials extending from about .4 million to .8 million years ago ( West 1980, p. 120; Nilsson 1983, p. 308). The early part of the Cromer complex of glacials and interglacials can be estimated at about .6–.8 million years according to the correlation table of Nilsson (1983, p. 308).
Therefore, according to West, the Cromer Forest Bed series might be as old as 1.75 million years or as young as .6–.8 million years. Nilsson (1983, p. 308) shows the Cromer Forest Bed series beginning at about .8 million years ago.
So if the heavily mineralized bone implement reported by Moir actually did come from the lowest levels of the Cromer Forest Bed, as he surmised, it might be as much as 1.75 million years old. The oldest
If, however, we take the younger of the possible dates for the oldest levels of the Cromer Forest Bed (about .6 million years) that would still be quite anomalous for England. According to Nilsson (1983, p. 111), the oldest stone tools from England come from Westbury-sub-Mendip deposits equivalent to the terminal phase of the Cromer Forest Bed, at about .4 million years ago.
Of course, Moir could have been wrong about the source of the mineralized bone implement. The beds at Overstrand cover almost the entire span of Cromer Forest Bed time (West 1980, p. 159). Thus the implement from Overstrand might have come not from the earliest but from the latest part of the Cromer Forest Bed sequence, making it the same age as the stone tools from Westbury-sub-Mendip, about .4 million years old—quite within the range of conventional acceptability. This possibility makes it all the more remarkable that the bone tool reported by Moir is not given serious attention by modern paleoanthropologists.