Читаем Формы в мире почв полностью

Является ли применение принципа движений в науке о Земле чем-то новым? Нет. Об этом очень много пишут геологи. Но им трудно найти исходный элемент, «кирпичик», который они могли бы «двигать». Почвоведам, работающим только с видимыми формами земной поверхности, это сделать легче[6].

Так, В. П. Семенов-Тяншанский (1928) придавал большое значение роли движений в классификации географических объектов. Движение он характеризовал как перемену места географическими явлениями. По его мнению, движения вызывают размещение природных тел в пространстве, как бы мебелируя его. Например, расставляя стулья вокруг то квадратного, то прямоугольного, то круглого стола, мы получим разные структуры. Расположение тел, постоянно повторяющихся в известном порядке и как бы не могущих существовать одно без другого, Семенов-Тяншанский назвал характерными группировками, сочетаниями, сообществами.

Попробуем доказать соответствие между реальными и абстрактными движениями почвенного покрова. Примем за основание пространства прямую линию — одну из характерных форм границ между ареалами. Прямая линия образуется за счет поступательного увеличения (приращения) своей длины. Другим основанием пространства будет окружность — одна из характерных форм ареалов, которая возникает за счет поднятий и опусканий земной коры и вращательных сдвигов.

Прямая и окружность на почвенных картах четко выражены в виде почв водоразделов, речных долин. Заметим, что непрерывное вращение в сочетании с непрерывным растяжением радиуса (его приращением) образует спираль. Спираль — инвариантная, устойчиво сохраняющаяся структура земной коры и почвенного покрова. Спиральные структуры имеют большой запас энергии, и они моложе кольцевых структур, исчерпавших флюктуационный заряд энергии. И хотя природа этих движений пока недостаточно ясна, попытаемся изложить следствия, вытекающие из анализа вращения и приращения.

Как известно, любое движение можно свести к вращению и приращению. Геометрическим образом вращения является окружность, а приращения — прямая линия. Можно показать, что в определенном смысле окружность и прямая линия взаимно обратны. Построим радиус-векторную диаграмму (рис. 3), например, с шагом в один румб (1р=11,25°, т. е. окружность, разделенная на 32 части). Вдоль каждого радиус-вектора откладываем величину синуса соответствующего угла. Вдоль ОА (рис. 3, а) отложим значение sin 11,25°, вдоль OB sin 22,5°=0,38 и так далее вплоть до вектора ОН, где откладывается значение sin 90°= 1; далее длины радиус-векторов повторяются в обратном порядке.

Теперь строим аналогичную радиус-векторную диаграмму, но вдоль радиус-векторов отложим значения 1/sin ? (рис. 3, 6), при этом получаем прямую линию. Видимо, можно считать, что формулы x=cos ? и у1 =sin ? описывают окружность единичного радиуса, а прямая линия обратна y1 и описывается формулой у2=1/sin ?.

На математическом языке этот путь к спирали можно охарактеризовать как движение от функции y1 = sin ? и y2= 1/sin ? к понятию комплексного числа.

Комплексное число объединяет вращение и приращение в единое целое. В прекрасной книге «Математика в современном мире» (1967) показаны операции с комплексным числом с помощью геометрии. На действительной оси, или оси X, каждая единица равна либо 1, либо —1. На мнимой оси, или оси У, каждая единица представляет собой либо i, т. е. ?—1, либо — i, Таким образом, все точки плоскости могут быть представлены комплексными числами вида z=x+iy. Если прямую, проведенную через начало координат и любую точку на плоскость, повернуть на 90° против часовой стрелки, то исходное комплексное число умножится на i. Второй поворот (второе умножение на i) приведет к новому значению комплексного числа.



Рис. 3. Радиус-векторная диаграмма


Пусть имеется какой-то вектор у. Умножив его на мнимую единицу i = ?-1, мы поворачиваем вектор на 90° против часовой стрелки. Значит, выражение iy; символизирует вращение. Приращение обозначим через х. Тогда спиральное вращение записывается в виде комплексного числа. Вектор у может вращаться несколько раз. Поэтому в более общем виде спираль запишем следующим образом: z1=x+iny,

Напомним о геометрических интерпретациях комплексного числа. Комплексное число определяется как пара чисел (х, у), задающая точку плоскости z1. В полярной системе координат такая точка задается в виде z1={r, ?}, где r — длина вектора, или модуль, а ? — угол его наклона, или аргумент. Аргумент и модуль — основные строительные блоки комплексного числа z=x+iy= =r(соs ? +i sin ?), изображаемого точкой с координатами х, у vi. углом ? радиус-вектора r этой точки с осью абсцисс.

Применение модуля (r — исходной меры длины, принимаемой для выражения кратных соотношений размеров почвенных форм) и аргумента (угла ? — независимой переменной величины, от которой зависят значения функции) придает почвенно-геологическим формам и их частям соизмеримость, облегчает их стандартизацию и унификацию.

Перейти на страницу:

Похожие книги

Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь
Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь

Этот труд Чарлза Дарвина – не только основа эволюционной биологии, но и дневник путешественника-натуралиста, побывавшего в Южной Америке, на Галапагосских островах и в Австралии еще в конце XIX века. Его научные и досужие наблюдения – это документ эпохи – эпохи в жизни людей, наземных улиток, утконосов, кенгуру, лавра и акаций. Автору, обладавшему интеллигентным юмором, удалось собрать замечательный «этнографический» материал о живой природе, рассказав об удивительных особенностях физиологии и поведения живых существ и передав слухи о занятных происшествиях, имевших место в их биографии.Книга для всех и на все времена.

Чарльз Роберт Дарвин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Образование и наука