Как видно из сравнения рис. 1.14 с рис. 1.16, изменения силы тока и амплитуды импульса от напряжения описываются аналогичными кривыми. Это одна и та же зависимость, только рис.16 дает более детальную и правильную картину физического процесса и возможность оценить k
гу. В частности, при напряжении U0U1 амплитуда импульса остается постоянной (рис. 16), что соответствует области плато ВС на рис. 1.14 (режим работы ионизационной камеры). Рис. 1.14 использовался для анализа работы токового детектора. Применительно к импульсным детекторам – счетчикам лучше говорить не о силе протекающего через них тока, а об амплитуде импульсов, и поэтому для анализа работы счетчиков следует обратиться к рис. 1.16.Рассмотрим область газового усиления, соответствующую напряжениям U1
U4
Рис.1.16. Зависимость амплитуды импульса от напряжения
В ней можно выделить три характерных участка. На участке U1
U2 газовое усиление обусловлено только процессами ударной ионизации. Увеличение амплитуды импульса на этом участке напряжений за счет газового усиления строго пропорционально числу актов первичной ионизации. Другими словами, здесь kгу зависит только от напряжения и не зависит от начальной ионизации – именно поэтому амплитуда и будет пропорциональна первичной ионизации. Это означает, в частности, что в любой точке на участке U1U2 отношение амплитуд импульсов, вызванных двумя различными ядерными частицами, зависит только от соотношения между энергиями, израсходованными этими частицами внутри детектора. Счетчик, работающий в области напряжений U1U2, называют пропорциональным, а саму область напряжений U1U2 – областью пропорциональности. На участке напряжений U2U3 амплитуда импульса продолжает увеличиваться. Хотя она по-прежнему зависит от числа актов первичной ионизации, но прямая пропорциональность нарушается т. к. kгу начинает зависеть от первичной ионизации. Участок напряжений U2U3 называют областью ограниченной пропорциональности.При росте напряжения выше U3
газовое усиление обусловлено не только ударной ионизацией, но и, во все возрастающей степени, процессами фотоэффекта. Амплитуда импульса в данной области напряжений перестает зависеть от числа первично образующихся ионов и, следовательно, от энергии регистрируемых частиц. Например, один акт первичной ионизации может вызвать в этой области такой же импульс, как и 1000 первичных актов. Это связано с возникновением разряда во всем объеме счетчика, а число носителей заряда максимально при разных значения kгу, который зависит от начальной ионизации. Область напряжений U3U4 – называют областью Гейгера, а счетчики, работающие при таких напряжениях, – по имени их создателей счетчиками Гейгера – Мюллера. Независимость амплитуды импульса от энергии ионизирующей частицы делает счетчики Гейгера – Мюллера особенно удобными для регистрации -частиц, обладающих непрерывным спектром энергий.Счетчик обычно представляет собой металлический цилиндр, играющий роль катода, по оси которого натянута металлическая нить – анод. Радиусы катода и анода сильно различаются между собой – первый составляет, как правило, 1–2 см, второй – несколько сотых миллиметра. Напряженность электрического поля вблизи нити на 2–3 порядка выше, чем около стенок цилиндра, и поэтому становится возможным подобрать такие напряжения, при которых область газового усиления охватывает только ближайшее к нити пространство. С ростом напряжения на электродах счетчика область газового усиления постепенно расширяется от нити к катоду, поэтому амплитуда импульса увеличивается с ростом напряжения на детекторе.