Вокруг галактического диска вращается примерно 6000 огромных облаков, состоящих из молекулярного газа и пыли. Каждое из них простирается на десятки-сотни световых лет и содержит туманное вещество, размер которого эквивалентен более чем миллиону солнц — и все это при температуре всего на несколько градусов выше абсолютного нуля (–273 °C). Эти холодные темные облака примерно на 73 % состоят из молекулярного водорода, на 25 % — из атомарного гелия, а на остаток приходится незначительная доля других молекул, таких как монооксид углерода и формальдегид, наряду с дымкой из микроскопических пылинок. Некоторые из этих пылевых облаков предстают перед нами в виде «темных туманностей», силуэты которых выделяются на сияющем звездном фоне Млечного Пути. Большой Провал, разделивший созвездия Орла и Лебедя, туманности Курительная Трубка в созвездии Змееносца и Угольный Мешок в созвездии Южного Креста — вот яркие примеры относительно близких к нам молекулярных облаков, скрывающих свет далеких звезд. Индейцы кечуа, живущие в Андах на территории Перу, воспринимали эти разнообразные темные области в светящемся Млечном Пути в обликах лисы, ламы, куропатки и разных мифических существ, тем самым изменив привычный взгляд на Млечный Путь как на светлую область на фоне черных небес.
Сейчас астрономы изучают темные туманности, наблюдая за светом, излучаемым их молекулами. Если учесть, что все это происходит при криогенных температурах, то по большей части свет излучается в низкоэнергетической микроволновой области электромагнитного спектра. Хотя молекулярный водород на сегодняшний день — это самая распространенная молекула, излучает он крайне слабо, за исключением случаев, когда его активизируют сильное ультрафиолетовое излучение или ударные волны, возникающие в межзвездной среде. А вот монооксид углерода легко излучает любую энергию, полученную им от звезд, космических лучей и даже от космического микроволнового фона. Его высокая излучательная способность помогла астрономам составить карту пространственного распределения молекулярных облаков по всему диску Галактики. Оказалось, что облака тяготеют к вращению в пределах кольца, которое охватывает область от 11 000 до 23 000 световых лет от центра Галактики, а также были получены некоторые намеки на то, что облака располагаются вдоль спиральных рукавов, хотя точное количество и форма рукавов остаются спорными.
Пристальное наблюдение за крупнейшими молекулярными облаками с акцентом на монооксиде углерода и других излучающих молекулах показало, что эти облака огромны и сложны по структуре, — каждое из них простирается на сотни световых лет и содержит молекулярный водород, по массе эквивалентный миллиону солнц. И более того, тысячи гигантских молекулярных облаков, заполнивших центр Галактики, — это самые крупные объекты из всех, что присутствуют в Млечном Пути. Внутри этих исполинов происходят удивительные метаморфозы и сгущается молекулярный газ, что в конечном итоге ведет к появлению новых звездных скоплений, а они, в свою очередь, оказывают энергетическую «обратную связь» на родительские облака, вызывая всевозможные структурные изменения и эмиссионные явления.
В Сети по запросу «Млечный Путь» вы, без сомнения, найдете замечательные снимки и картины, запечатлевшие нашу Галактику и множество живописных темных туманностей, которые подобны волнам, набегающим на звезды. Может быть, вам посчастливится увидеть и небольшие, более яркие газовые области, светящиеся розовыми оттенками. Простой поиск по слову «туманности» позволит вам увидеть их потрясающе красивые снимки, снятые крупным планом.
Эмиссионные туманности делятся на три основных типа: области H II, планетарные туманности и остатки сверхновых. Области H II — это части молекулярных облаков, недавно сформировавших сотни или тысячи звезд, организованных в скопления. Самые массивные из этих звезд невероятно горячие и мощные. В частности, их ультрафиолетовое излучение расщепляет молекулы газа на атомы, а затем срывает с атомов их самые внешние электроны. В ходе этой фотоионизации из положительно заряженных ионов и отрицательно заряженных электронов, вместе имеющих отличительную температуру в несколько тысяч градусов, образуется плазма. Наименование «H II» относится к однократно ионизированному состоянию водорода, тогда как «H I» обозначает нейтральный атомарный водород. Имея только один электрон, водород может существовать только в формах H I и — после ионизации — H II.