2. Планеты изменяют скорость на своих орбитах так, что радиус-вектор, соединяющий их с Солнцем, заметает равные площади за равные промежутки времени. Другими словами, скорость планет максимальна в точке, наиболее близкой к Солнцу (перигелий), и минимальна в самой дальней от него (афелий).
Предложив эти два закона, Кеплер отказался от идеи Коперника об идеальных круговых орбитах, по которым планеты вращаются с неизменной скоростью. Под угрозой было и его собственное представление о хрустальных сферах, соприкасавшихся с платоновыми многогранниками: наблюдаемое движение Марса, анализ которого провел он сам, требовало отвергнуть эту идею. Кеплер не стал держаться за вожделенный мираж — и добился одного из величайших триумфов в науке.
Третий закон движения планет был открыт после того, как Кеплер проанализировал данные, полученные в ходе наблюдений за другими планетами. В данном случае он сохранил свои священные пропорции, определяющие орбитальные периоды планет. Вот что гласит закон, опубликованный в 1627 году в «Гармонии мира»:
Квадраты периодов обращения планет относятся друг к другу, как кубы их средних расстояний от Солнца. Это означает, что их орбитальные периоды (
Эта взаимосвязь показывает, что планеты движутся вокруг Солнца не синхронно, подобно соринкам на вращающемся компакт-диске, а по мере удаления от него все сильнее замедляются (рис. 3.6). Вот почему Земля время от времени «обгоняет» внешние планеты (Марс, Юпитер, Сатурн и др.), вызывая наблюдаемые ретроградные движения этих небесных тел.
Одновременно с эпохальными открытиями Кеплера тайны движения планет пытался раскрыть и итальянский математик, физик и астроном Галилео Галилей (1564–1642). Узнав о том, что в Нидерландах создали новый оптический прибор, способный увеличивать вид далеких объектов, он изготовил собственные «подзорные трубы» и направил их в небеса. Четыре маленьких спутника (луны), открытые им у Юпитера, напомнили Галилею миниатюрную Солнечную систему, — и разве теперь нельзя было с большей уверенностью предположить, что и настоящая Солнечная система сосредоточена вокруг Солнца, своего крупнейшего представителя?
Рис. 3.6.
Согласно третьему закону Кеплера, орбитальные периоды планет не равны, а возрастают в степени, равной 3/2 среднего расстояния от планеты до Солнца (в астрономических единицах [а. е.]). При построении графика в логарифмическом масштабе (со степенями десяти через равные промежутки времени) это соотношение выглядит как прямая линия с наклоном 3/2.Затем Галилей стал наблюдать за тем, как двигалась по орбите Венера. У нее были заметны фазы, очень похожие на фазы Луны. В обеих системах мира — и в геоцентрической, и в гелиоцентрической — это можно было объяснить действием солнечных лучей, озаряющих планету. Однако Галилей заметил, что в фазе растущего полумесяца Венера казалась намного больше, чем от второй четверти до «полнолуния». Если бы орбита Венеры (подобно лунной) пролегала вокруг Земли, было бы очень трудно измыслить верный ряд эпициклов и деферентов, чтобы смоделировать такие поразительно изменчивые размеры. А гелиоцентрическая система Коперника и Кеплера, напротив, легко объясняла перемену фаз, поскольку в ней Венера следовала вокруг Солнца по орбите, находившейся внутри орбиты Земли. Незадолго до своего «полнолуния» Венера оказывается дальше всего от нашей планеты, на противоположной стороне от Солнца, и поэтому кажется очень маленькой. Фаза растущего полумесяца наступает, когда Венера ближе всего к Земле, а Солнце с наивысшей яркостью подсвечивает ее сзади, поэтому в это время ее видимый размер оказывается наибольшим. Возможно, именно наблюдения Галилея за Венерой в большей степени, чем любое другое наблюдение или анализ, послужили решающим «неопровержимым доказательством» в пользу гелиоцентрической системы мира.