Читаем Гайд по астрономии. Путешествие к границам безграничного космоса полностью

Поскольку свет распространяется с конечной скоростью, равной 300 000 км/с, ему требуется время на то, чтобы дойти до нас от своего источника. Это время и называется аберрационным. Например, Луну, до которой от нас 384 000 км, мы видим такой, какой она отражала солнечный свет 1,28 секунды тому назад; следовательно, ее аберрационное время составляет 1,28 секунды. А Солнце, до которого 150 млн км, мы видим таким, каким оно бурлило и испускало свет 8,33 минуты назад, и его аберрационное время — 8,33 минуты. Вот несколько примеров такого времени, которые стоит принять во внимание:

Сатурн — 1,1 часа при максимальном сближении с Землей Плутон — 6,9 часа при максимальном сближении с Землей ? Центавра — 4,2 года

Вега — 25 лет

Полярная звезда — 434 года

Туманность Ориона — 1500 лет

Галактический центр — 27 000 лет

Галактика Андромеды — 2,5 млн лет

Ближайший квазар — 3С 273 (2,4 млрд лет)

Самая дальняя обнаруженная галактика — GN-z11 (13,4 млрд лет)


Измерять метрические расстояния за пределами галактики Андромеды и Местной группы гораздо сложнее: этому препятствует расширение Вселенной. Например, расстояние до той или иной галактики в то мгновение, когда из нее был испущен свет, в конечном итоге оказывается намного меньше расстояния до нее в тот момент, когда нам удается ее обнаружить. Поэтому оценивать космические расстояния лучше в аберрационном времени — оно лучше всего учитывает расширение и дает нам единую меру расстояния до объекта в пределах расширяющегося космоса. Возможно, это вас удивит, но с помощью «Хаббла» и крупнейших наземных телескопов астрономы нашли галактики, для света которых характерно такое красное смещение, что он, по всей вероятности, излучался, когда видимая Вселенная была в 10 с лишним раз компактнее, а значит, насчитывала всего несколько сотен миллионов лет. То, что доступно нашему взгляду из тех изначальных времен, во многом резко отличается от того, что мы наблюдаем в текущей Вселенной, причем галактики ранней эпохи кажутся намного меньше и массивнее, чем их современные аналоги.

В последующих главах мы будем говорить о той части Вселенной, которая доступна нашему наблюдению, поскольку она располагается в пределах светового радиуса, установленного возрастом Вселенной в 13,8 млрд лет. Однако это пространственное ограничение не помешает нам исследовать всю историю космоса и мы сможем пронаблюдать — по крайней мере в принципе — все основополагающие стадии от Большого взрыва до эпохи рекомбинации, образования первых галактик, звезд и планет.

Происхождение космоса


Утверждение, согласно которому у Вселенной было начало, на самом деле звучит невероятно странно и необъяснимо. Впрочем, это не мешало людям придумывать истории о происхождении космоса, ставшие неотъемлемой частью их культурной идентичности. И более того, в разных культурах, возникших задолго до появления письменности, очень много преданий о возникновении мира. Пожалуй, из существ, живущих на Земле, только нам, людям, нужно объяснить наше собственное существование в свете происхождения и эволюции большой Вселенной.

Я помню времена, когда астрономы все еще не могли с уверенностью сказать, действительно ли у Вселенной было начало. В 1960-х годах за первенство соперничали две космологические теории. Одна из них называлась теорией стационарной Вселенной. В 1940-х и 1950-х годах ее отстаивали сэр Фред Хойл и его коллеги. Эта теория признавала расширение космоса, открытое Эдвином Хабблом в 1929 году, но допускала появление новой материи для заполнения пустот (войдов) и гласила, что Вселенная остается по существу неизменной во всем пространстве-времени. Так ученым удавалось придерживаться популярного представления об однородности — так называемого идеального космологического принципа. Никакое место или время не играло особой роли, в том числе и наше время на Земле.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука