Последнее, что может совершить белый карлик, — это взорваться и выбросить в космос все свое вещество. Считается, что это происходит в тесных двойных системах, когда белый карлик накапливает достаточно массы от звезды-спутника и превышает предел Чандрасекара в 1,4 M
?. Внезапный взрыв, направленный вовнутрь, вызывает ударные волны, которые разрывают остатки белого карлика. Последствия таких взрывов предстают перед астрономами в виде сверхновых типа Ia, когда в спектрах вспышек очень мало эмиссионных линий водорода, поскольку взрывающийся белый карлик по большей части лишен какой-либо водородной оболочки. А вот коллапс ядра у массивных звезд, богатых водородом, приводит к образованию сверхновых типа II, в спектрах которых эмиссионных линий водорода много. Все сверхновые типа Ia возникают из остатков, практически равных по массе, и обладают одинаковой полной светимостью, поэтому их можно использовать как стандартные свечи при определении расстояний до галактик, в которых эти звезды находятся. Так астрономы достоверно подсчитали расстояния до галактик, удаленных от Земли на миллиард световых лет.
Нейтронные звезды
На массивной звезде с бездействующим ядром, масса которой превышает 1,4 M
?, под воздействием гравитации произойдет имплозия — взрыв, направленный вовнутрь, — после чего она превратится либо в нейтронную звезду, либо в черную дыру. Мы уже говорили, что это приведет к взрыву окружающих звездных оболочек, и перед наблюдателем этот взрыв предстанет в виде сверхновой II типа. Астрономы полагают, что разделительная линия, определяющая судьбу такой звезды, проходит на уровне примерно 3 M?. Для нейтронной звезды сдавливание прекращается, когда остаток достигает плотности ядра — точки, в которой вырожденные электроны, соединившись с протонами в атомных ядрах углерода и кислорода, образуют нейтроны. После этого перед нами, по сути, возникает гигантское атомное ядро, состоящее исключительно из вырожденных нейтронов. Остаток звездного ядра приходит в это состояние после того, как коллапс сожмет его до размеров города — около 25 км в поперечнике. Итоговая плотность в 1014 г/см3 превышает плотность белого карлика в 100 миллионов раз. Чайная ложка вещества нейтронной звезды имела бы массу, эквивалентную массе Эвереста, — и если бы эту ложку уронили на поверхность Земли, ее содержимое прошло бы сквозь каменную толщу, как пуля сквозь воздух, а затем металось бы от места удара к другой стороне Земли и обратно, наподобие игрушечной катушки йо-йо.В 1930-х годах, вскоре после открытия нейтронов, астрономы впервые выдвинули гипотезу о том, что взорвавшиеся остатки массивных звезд могут существовать как нейтронные звезды. Но только в 1960-х годах им удалось получить убедительные доказательства реального присутствия этих невероятных объектов в космосе. В 1967 году аспирантка Джоселин Белл (позже Белл Бернелл) и ее научный руководитель Энтони Хьюиш впервые заметили странности с радиосигналами, регистрируемыми в Маллардовской радиоастрономической обсерватории в Англии. Что-то в космических безднах вспыхивало и гасло в необычайно регулярном ритме. Последующие наблюдения, проведенные несколькими радиообсерваториями, выявили десятки мерцающих источников радиоизлучения по всей небесной сфере. Эти источники пульсировали с периодичностью от нескольких секунд до нескольких миллисекунд, и хотя изначально их в шутку назвали LGM
(от little green men, «маленькие зеленые человечки»), позже они получили более почтенное наименование «пульсары», которое с тех пор за ними и закрепилось.Астрономы уже знали о пульсирующих звездах, но период их пульсаций занимал от нескольких часов до нескольких дней и даже недель. Ни одна обычная звезда не смогла бы пульсировать с интервалом от секунды до миллисекунды: за несколько таких пульсаций ее просто разорвало бы на куски, причем не смог бы устоять даже белый карлик. Возможно, если бы он вращался, то мог бы испускать излучение по направлению к нам при каждом обороте своего остатка — но для объяснения феномена пульсара требовалось допустить вращение столь стремительное, что гравитация, характерная для белого карлика, не смогла бы удержать его от разрыва. Оставалась лишь модель нейтронной звезды, постулированная еще в 1930-х годах. Такая звезда, масса которой намного превышала массу Солнца, а объем был сравним с объемом сибирского озера Байкал, обладала бы достаточно сильной самогравитацией, чтобы противостоять своему безудержному вращению.