1) Масса элементарных частиц, протонов, нейтронов и электронов абсолютно неизменна независимо от скорости, и структуры в которую они входят. Пояснения: раньше бытовало мнение, что например при реакции расщепления ядра урана, преодолев сильные взаимодействия, и набрав какую-то скорость, выделив тепло, масса системы должна понизится, что происходит из закона о сохранении массы. На самом же деле есть такое мнение, что масса этих частиц остаётся неизменной, меняется лишь их расположение и структура во вселенной. То есть часть их энергии, представлена не массой а неким взаимодействием. Чтобы понять, что имеется ввиду: представим ситуацию, абсолютный вакуум, где-то между вселенными, в нём на расстояние 2 метра помещено две частицы, имеющие массы протонов. Они под действием силы гравитационной постоянной и собственных масс постепенно сближаются, за счёт притяжения. Меняется ли энергия системы? Без сомнения, нет, потенциальная превращается в кинетическую, но энергия не меняется. Теперь они сблизились, и получили инерцию, и тут внешняя сила останавливает их сближения, полностью абсорбировав кинетическую энергию. Изменится ли энергия системы? Да, она уменьшится, но изменится ли масса? Нет, масса останется не изменой, энергия расположения не имеет массы. Аналогично не имеет массы и энергия расположения нескольких элементарных частиц в ядре атома. Они имеют энергию расположения, близкой по природе энергии тех двух частиц, которые мы рассмотрели, но эта энергия не имеет массы. Поэтому вполне возможно, что масса продуктов реакции расщепления ядра не изменяется.
Кто-то быть может выдвинет противоречащую здравому смыслу теорию, что если бы энергия не имела массы, то её можно было бы запасти неограниченно много? Что ж пусть попробует, наврядли ему получится сконструировать ядро, которое при расщеплении будет выделять энергию большую, чем аннигиляция. Стоит также учитывать, что данная энергия в принципе не может быть больше энергии аннигиляции, просто из-за того что величина энергии аннигиляции прямо связано с пределом гравитационного взаимодействия, см. ниже.
В итоге, кто-то опять может выдвинуть сумасшедшую теорию, что если рекомбинировать вещество из энергии высокой плотности, сразу в тяжёлый атом, потом получить энергию расщепления, и потом аннигилировать полученное, то мы получим из ниоткуда энергию расщепления. Ответ отрицательный, чтобы сделать тяжёлый атом, надо затратить на столько больше энергии, сколько он выделит при расщеплении, (стоит учесть, что не всегда при расщеплении энергия выделяется, при расщеплении маленьких ядер, она поглощается, и наоборот при слиянии выделяется) поскольку при рекомбинации энергии в материю производятся лишь элементарные частицы, а не готовые тяжёлые ядра.
Возникает другой вопрос, неужели тогда при термоядерных реакциях масса не меняется, откуда берётся энергия там. Тут стоит разделить все термоядерные реакции на два типа, а именно термоядерные реакции смены структуры ядра, при которых не происходит изменения самих элементарных частиц. И термоядерные реакции, при которых изменяются сами элементарные частицы, например протон превращается в нейтрон, оба этих типа реакций относят к термоядерным, но их суть принципиально отличается. При первом типе реакций, масса не меняется, при втором, меняется.
Надеюсь, на более простую несостыковку данной теории с действительностью а именно на то, что массы элементарных частиц дробны. Можно объяснит кратко, различие в изотопном составе…"