Прежде чем привести мнение профессора Нефа о развитии прикладного знания и процесса квантификации в истории западной цивилизации, отметим такой его аспект, как неотделимость эволюции математики от развития книгопечатания. Блестящее изложение культурной истории математики мы находим в книге Тобиаса Данцига «Число: язык науки», о которой Эйнштейн сказал: «Это, без сомнения, самая интересная книга об эволюции математики, которая когда-либо попадала в мои руки». Уже в начале этого труда мы находим объяснение связи евклидовой организации чувственного опыта с фонетическим алфавитом. Фонетический алфавит — это язык и одновременно мифическая форма западной цивилизации, и как таковой он осуществляет перевод в сех наших чувств в визуальное, или «изобразительное», «замкнутое» пространство. Математикам более, чем кому-либо другому, понятен произвольный и условный характер этого континуального, гомогенного визуального пространства. Почему? Потому что число как язык науки является условной формой для обратного перевода евклидового пространства в аудиотактильное.
В качестве примера Данциг приводит измерение длины дуги (р.139):
Возьмем в качестве иллюстрации понятие длины дуги кривой. Физическое представление в данном случае отталкивается от изогнутой проволоки как вещественного основания. Мы мысленно
Альтернатива заключается в том, чтобы вписать в дугу последовательность прямолинейных отрезков увеличивающегося числа сторон. Последовательность таких отрезков имеет предел, и длина дуги определяется пределом этой последовательности.
То, что верно для понятия длины, верно и для площади, объема, массы, движения, давления, силы, натяжения, скорости, ускорения и т. п. Все эти понятия родились в «линейном», «рациональном» мире, где существуют лишь прямые линии, плоскости и где все единообразно. Следовательно, мы должны либо отказаться от этих элементарных рациональных понятий (это означало бы поистине революцию — настолько глубоко данные понятия укоренились в нашем сознании), либо приспособить эти рациональные понятия к миру, который не является плоским, прямым и единообразным.
Но Данциг ошибается, полагая, что евклидово пространство — линейное, плоское, прямое и единообразное — укоренено в нашем сознании искони. Такое пространство — продукт письма, и оно неведомо дописьменному, или архаическому, человеку. Мы уже обращались к Мирче Элиаде, который посвятил этой теме целую книгу («Священное и мирское»), где показал, что присущее западному человеку понятие гомогенного и континуального пространства и времени совершенно отсутствует в опыте архаического человека. Точно так же оно отсутствует и в китайской культуре. Дописьменный человек всегда мыслит пространство и время уникальным образом структурированным, подобно тому, как это делает математическая физика.
Ценность указаний Данцига состоит в том, что для того, чтобы защитить свою заинтересованность в евклидовом пространстве (т. е. письме), западный человек изобрел параллельную, хотя и прямо противоположную, числовую форму, которая помогает ему справиться со всеми неевклидовыми измерениями повседневного опыта: