К сожалению, бо́льшую часть инфракрасного света, испускаемого космическими источниками, блокирует атмосфера Земли – за исключением узких «окон», какие есть, например, в субмиллиметровых полосах, где и работает
Все инфракрасные детекторы должны храниться в холодном состоянии, с чем помогает криоген. «Спитцер» – космический телескоп, который находится не на орбите Земли, а на околоземной орбите Солнца, так что запас его криогена нельзя пополнить. Когда весь криоген окончательно израсходован, инструменты, которые необходимо охлаждать, отключаются. Единственными рабочими механизмами на спутнике на момент написания этой книги оставались две камеры с самой короткой длиной волны инфракрасной матрицы, работающие на длинах 3,6 и 4,5 микрон. Довольно скоро они тоже перестанут функционировать, и «Спитцер» завершит свою миссию[4]
. Космическая обсерватория «Гершель», работавшая c 2009 по 2013 год на более длинных волнах – от 50 до 500 микрон, – завершила свою миссию, когда ее запас криогенного гелия подошел к концу. Одними из крупнейших достижений этой обсерватории стали проведение огромных картографических исследований, обнаружение тысяч ярких галактик на дальнем инфракрасном и субмиллиметровом диапазонах волн, а также детальные исследования местных галактик в дальнем инфракрасном диапазоне, которые дополняют работу, выполненную «Спитцером».Переизлученный инфракрасный свет – настолько важный источник для излучения галактики, что если взять среднее значение за все время существования Вселенной, то примерно один из каждых двух фотонов, генерируемых в результате звездообразования, излучается в инфракрасном диапазоне. Это бо́льшая часть внегалактического энергетического бюджета.
Изображение спиральной галактики M100, видимой в средней инфракрасной части электромагнитного спектра на длинах волн 3–8 микрон, сделанное космическим телескопом «Спитцер». Срединные полосы отслеживают теплую пыль, связанную с областями звездообразования. В отличие от оптических изображений, где пыль блокирует свет от звезд, на инфракрасных длинах волн сама пыль светится (красным), в то время как свет звезд намного слабее (голубой). Центральная область этой галактики ярко сияет там, где есть кольцо довольно интенсивного звездообразования, а плотные спиральные рукава четко подсвечены многими яркими «узлами» звездной активности. Инфракрасные наблюдения дают дополнительное представление о галактиках, что очень важно, учитывая повсеместную распространенность межзвездной пыли
Это означает, что около половины всей работы Вселенной по формированию звезд фактически можно отследить при помощи пыли, испускающей инфракрасное излучение, а не в результате прямого ультрафиолетового и оптического излучения звезд и газа. Конечно, это средние данные по всем галактикам. Когда мы рассматриваем отдельные галактики, то обнаруживаем, что в самых экстремальных системах во Вселенной – например, в наиболее активных областях звездообразования – часто преобладает их инфракрасный выход. При этом сами они настолько затенены, что могут быть почти невидимыми в полосах видимого света.
Еще одно изображение в средней инфракрасной области спектра, на этот раз – знаменитой галактики Сомбреро, которое также было получено с помощью космического телескопа «Спитцер» в средних инфракрасных диапазонах (3–8 микрон). Галактика Сомбреро слегка наклонена от края, если смотреть с нашей точки наблюдения; ее наиболее яркая характеристика – большой пылевой диск, который представляет собой кольцо, окружающее эллиптическое распределение относительно старых звезд. На этом инфракрасном изображении кольцо пыли, нагретое звездным светом, сияет красным