Когда к этим симуляциям добавляется газ, можно отслеживать его коэволюцию с темной материей. По мере того как гало темной материи растут от начальных возмущений в поле гладкой материи, часть газа «перетекает», притягиваясь той же самой неразличимой силой тяжести. Мы можем наблюдать за рождением галактик, анализируя, как газ направляется в гравитационную яму и как на него влияют процессы вроде образования звезд, вспышек сверхновых и роста черных дыр. Но моделирования показывают, что в гало не так много газа; он притягивается и ускоряется в направлении крупномасштабной волокнистой структуры, которая также формируется в объеме, обладающем значительной силой притяжения.
Также моделирование показывает, что во время этого процесса газ нагревается. Уровень нагрева в некоторой степени зависит от общей гравитационной энергии системы, поэтому газ, который всасывается в плотные кластеры, нагревается больше всего, вплоть до рентгеновских световых температур. Газ, поступающий в нити, нагревается только до нескольких миллионов градусов – это тепло-горячая межгалактическая среда. При этом распасться на галактики, образующиеся внутри этих нитей, газ может только после потери части этой энергии, что предотвращает конденсацию в галактиках значительной части общей массы барионов во Вселенной. Конечно, существует постоянный обмен: некоторая часть газа охлаждается в галактиках, обеспечивая новый источник топлива для формирования звезд. В то же время, однако, газ выбрасывается, и энергия возвращается в межгалактическую среду от самих галактик (как излучение от звезд, так и кинетическая энергия от потоков, как мы видели в M82). Так что за эти барионы идет непрерывная битва посредством гравитации и конкурирующих сил галактической обратной связи.
Рентгеновские и ультрафиолетовые исследования линий поглощения в некотором роде подтверждают существование неуловимого барионного компонента Вселенной. Эти наблюдения довольно сложны, и существует ограниченное количество элементарных «видов», которые можно использовать в качестве зондов, давая нам ограниченную картину тепло-горячих межгалактических сред. Хуже всего то, что для исследования линий с подсветкой требуется что-то яркое на заднем плане, чтобы на переднем мы могли увидеть контраст поглощающего вещества. В большинстве случаев «что-то яркое» – это далекие светящиеся квазары. Случайные выравнивания далеких квазаров с плотными частями тепло-горячих межгалактических сред редки, что еще сильнее ограничивает эти исследования «карандашами» – пучками лучей, исходящими от Земли. Это пример модели и моделирования, дающих четкий прогноз об эволюции и распределении газа во Вселенной, который можно проверить на основании наблюдений. Если тепло-горячие межгалактические среды обнаруживаются, то их трудно наблюдать, и требуются длительные экспозиции с помощью космических средств, главным образом спектрографа космического происхождения космического телескопа «Хаббл», который работает в УФ-диапазонах, или таких рентгеновских телескопов, как «Чандра» и
Существуют и некоторые противоречия между наблюдениями и числовыми моделями. Я упоминал выше, что симуляции N-тела ограничены разрешением: вы можете моделировать большой кусок Вселенной, содержащий миллионы галактик, но не можете моделировать сами галактики с огромным количеством деталей. В качестве альтернативы можно выбрать модель одной галактики с высоким разрешением, но не ее крупномасштабную среду. Моделирование очень большого N-тела было выполнено для изучения эволюции темной материи в отдельных галактиках или, скорее, гало, которые похожи на Млечный Путь. Техника заключается в том, чтобы взять симуляцию Вселенной в большом объеме, например «Моделирование “Миллениум”», а затем определить несколько галактик, которые вы хотите симулировать более подробно. Узнав местоположение этих систем, вы можете запустить новую симуляцию с той же физической моделью и начальными условиями, но просто сфокусированными на этих галактиках.