Среди встроенных в холм театров, главным фасадом которых является наружная стена сцены, лучше других сохранился театр в Араузо (современный Оранж, Галлия). Этот театр (рисунок 1.8) при диаметре 103 метра вмещал 7 тысяч зрителей [7]. Театр имел весьма развитую систему вертикальных рефлекторов (7 позиций №1 на рисунке 1.8), способствующую усилению звука и формированию структуры первых отражений.
Развитая плоскость фасада площадью 30х103 метра выглядит весьма внушительно. По верху эта стена имеет два ряда отверстий (рисунок 1.9) для кронштейнов – опор стоек велария (тента для защиты зрителей и актёров от непогоды).
Веларий также мог быть весьма интересным и своеобразным рефлектором при достаточно большом весе единицы его площади.
Ярким примером театра с пространственно развитой сценой и амфитеатром является сохранившийся до наших дней театр в Пальмире (Сирия) [14]. Строители этого театра возвели его на ровной поверхности, не используя рельеф местности, так как местность пустынна. Театр не был традиционно «встроен» в холм, как, например, театр в Араузо или в Оранже (Галлия). Не только стены на сцене театра, но и трибуны (и основание этих трибун) здесь были возведены из естественного камня.
Представляем ещё один театр в Галлии (II век новой эры), в Аспенде (рисунки 1.10 и 1.11).
Для II века новой эры характерно то, что мы наблюдаем наличие в театре уже почти всех видов известных в наше время рефлекторов и рассеивателей, которые применяются в современных: концертных залах, оперных театрах и других зрелищных сооружениях.
Так же, как в Афинском театре VI века до новой эры (план на рисунке 1.4) в театре Аспенда II века новой эры (план на рисунке 1.11) количество лучевых лестниц во втором ярусе в два раза больше, чем в первом ярусе.
Двухкратное (с 10 до 20) возрастание количества лучевых длинных волноводов приводит к возрастанию в два раза излучаемой волноводами энергии, т.е. – к возрастанию уровней звуковой энергии на 3 децибела Это весьма положительно сказывается на восприятии зрителями звучания спектакля.
В театре Аспенда регулирование наклона горизонтального рефлектора (позиция 4 на рисунке 1.10) не могло быть осуществлено. Этот рефлектор мог быть либо только наклонный, без изменения угла поворота, либо – нет из-за отсутствия реальных возможностей выбора и применения соответствующих конструкций.
Однако регулирование наклона этого рефлектора, если бы было возможно, позволило бы регулировать и время реверберации в театре.
В главе, посвященной Мариинскому оперному театру, все выгоды для акустики зала при технологической возможности динамичного изменении угла поворота рефлектора над сценой будут мною наглядно и полезно продемонстрированы.
В конкурсном проекте Мариинского оперного театра регулирование наклона горизонтального рефлектора нами было применено при технологическом переходе от постановки оперного спектакля к симфоническому концерту, когда в зале перед спектаклем в течение в течение весьма короткого интервала времени -в три-четыре часа- требовалось создавать то или иное время реверберации при сохранении оптимальной структуры первых отражений (глава 3).
В средние века нашей эры акустические традиции театрального зодчества не только сохранялись как неизменные достижения древних времён, но и развивались соответственно тематике театральных постановок и техническим усовершенствованиям театральных технологий.
К греческим и римским амфитеатрам, где зрители располагались полукругом на постепенно повышающихся уровнях, своими корнями восходит архитектура современных оперных театров. Их архитектура может быть названа классической.
Форма зала в виде параболоидной чаши позволяла сократить его длину и обеспечить прямыми звуковыми лучами все точки зала.
Переход от открытых амфитеатров к полностью закрытым театрам был начат в XVI веке.