Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

Заметьте, что здесь не только усилено заключение, но и опущено условие сообщаемости, характеризовавшее более слабую Коллективную Версию. Давайте рассмотрим эту смелую версию Тезиса.

Эта версия утверждает, что когда человеческое существо что-то вычисляет, его умственная деятельность может быть изоморфно отображена в некой программе Флупа. Это не означает, разумеется, что в мозгу действует настоящая программа Флупа, написанная на языке Флуп с командами НАЧАЛО КОНЕЦ ПРЕРВАТЬ и так далее. Это значит только то, что операции выполняются в том же порядке в каком они могли бы выполняться в программе Флупа, и что логическая структура вычислений может быть отображена во Флупе.

Чтобы эта идея имела смысл, мы должны различать уровни как в компьютере, так и в мозгу — иначе эта мысль может показаться совершенной чепухой. Предположительно, операции вычисления в наших головах совершаются на высшем уровне, опирающемся на низшие уровни и, в конечном счете, на «аппаратуру». Таким образом, говоря об изоморфизме, мы подразумеваем, что высший уровень может быть изолирован и что мы можем обсуждать происходящие там процессы независимо от того, что делается на других уровнях — и затем проимитировать этот высший уровень в программе Флупа. Точнее, наше предположение заключается в том что существуют некие блоки мысленной «программы», которые играют роль математических построений и активируются таким образом, который может быть в точности отображен в программе Флупа (см. рис. 106). Эти блоки существуют благодаря инфраструктуре мозга, которую мы обсуждали в главах ХI и XII, а также в «Прелюдии» и в «Муравьиной фуге». Мы не предполагаем изоморфной деятельности на низших уровнях мозга и компьютера (нейроны и биты).

Если не букву, то дух Версии Изоморфизма можно передать, говоря, что гениальный идиот, вычисляя, скажем логарифм , проделывает операции, изоморфные операциям карманного калькулятора, решающего ту же задачу. Изоморфизм существует на уровне арифметических действий, а не на уровне нейронов мозга и электрических цепей калькулятора. (Разумеется, при решении любой задачи можно следовать различными путями — но, в принципе, если не человек, то карманный калькулятор может быть запрограммирован вычислить ответ каким-то определенным путем.)


Рис. 106. Поведение натуральных чисел может быть представлено в человеческом мозгу или в компьютерной программе. Эти два представления могут быть затем отображены друг на друга на соответствующем абстрактном уровне.

Представление знаний о мире

Все это кажется убедительным, когда мы говорим о теории чисел, поскольку события там происходят в весьма ограниченном и чистом мире. Его границы, правила и обитатели определены четко, словно в хорошо построенном лабиринте. Такой мир намного менее сложен, чем открытый и неопределенный мир, в котором мы обитаем. Будучи поставлена, задача теории чисел полностью самодостаточна; задача реального мира, напротив, никогда не может быть с уверенностью изолирована от воздействия этого мира. Например, чтобы заменить перегоревшую лампочку, вам может понадобиться подвинуть помойное ведро; при этом вы можете нечаянно толкнуть стоящий поблизости столик и уронить на пол лежавшие на нем таблетки; после чего вам придется подмести пол, чтобы ваша собака их не съела… и так далее, и тому подобное. Таблетки, помойное ведро, собака и электрическая лампочка весьма мало соотносятся между собой, но здесь, благодаря некоему повседневному событию, они оказались в тесной связи. И невозможно предсказать, какие еще предметы оказались бы вовлечены в эти отношения, если бы события немного изменились. С другой стороны, решая задачу теории чисел, вам никогда не придется иметь дело с такими посторонними предметами, как таблетки, собаки, помойные ведра и щетки. (Разумеется, ваше интимное знакомство с означенными предметами может сослужить вам службу, когда вы пытаетесь представить себе задачу в форме геометрических фигур — но это совершенно другое дело.)

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература