Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

Конечно, я не обманывал себя, предполагая, что за этими фразами скрывается разумное существо. Я как никто другой понимал, почему этой программе было весьма далеко до настоящего мышления. К этому случаю отлично приложима теорема Теслера: как только данный уровень владения языком был механизирован, стало ясно, что его нельзя назвать разумом. Но благодаря этому удивительному опыту у меня сложилось впечатление, что настоящая мысль основывается на гораздо более длинных и сложных последовательностях символов в мозгу — символов, двигающихся, наподобие поездов, одновременно по многим параллельным и перекрещивающимся путям; мириады моторов — возбуждающихся нейронов — толкают, тащат и переводят с пути на путь вагоны этих поездов…

Это был всего лишь интуитивный образ, непередаваемый словами. Но образы, интуиция и мотивация находятся так близко друг от друга, что они часто смешиваются; глубокое впечатление, произведенное этим образом, заставило меня серьезнее задуматься над тем, что же такое, на самом деле, представляет из себя мысль. В других местах книги я попытался описать некоторые «дочерние» образы этой первоначальной картины — в особенности, в «Прелюдии» и в «Муравьиной фуге».

Когда я думаю об этой программе сегодня, по прошествии двенадцати лет, меня более всего поражает полное отсутствие зрительных образов за тем, что она говорит. Программа не имела ни малейшей идеи о том, что такое раб, человек и все остальные вещи. Слова были для нее только формальными символами, такими же абстрактными, как p и r в системе pr, — а может быть и еще абстрактнее. Программа пользовалась тем, что когда люди читают какой-либо текст, они обычно наделяют все слова смыслом, словно смысл с необходимостью привязан к группе букв, формирующих то или иное слово. Моя программа — это нечто вроде формальной системы, чьи «теоремы» — порожденные ею фразы — имели готовые интерпретации (по крайней мере, для людей, говорящих по-английски). Но в отличие от системы pr, не все высказывания, интерпретированные таким образом, получались истинными. Многие из них оказались ложными, а многие — просто бессмысленными.

Скромная система pr отразила крохотный уголок вселенной. Но в моей программе — за исключением небольшого количества семантических ограничений, которым она должна была подчиняться — не было подобного «зеркала», отражающего структуру реального мира. Чтобы наделить программу этим зеркалом, мне пришлось бы «завернуть» каждое понятие в множество слоев знаний о мире. Этот проект очень отличался от моего первоначального замысла. Не то, чтобы я не хотел этим заниматься — просто до сих пор руки не доходили.

Грамматики высшего уровня…

На самом деле, я часто задумывался о возможности написать грамматику типа УСП (или какого-нибудь иную программу, производящую предложения), которая выдавала бы только истинные высказывания. Такая программа наделяла бы слова действительным смыслом так, как это происходило в системе pr и в ТТЧ. Идея языка, в котором ложные высказывания грамматически неверны, не нова — она была высказана Иоганном Амосом Комениусом еще в 1633 году. Эта идея очень соблазнительна, поскольку такая система была бы магическим кристаллом: чтобы узнать, истинно ли высказывание, нужно было бы всего лишь проверить его грамматическую правильность… На самом деле, Комениус пошел еще дальше: в его языке ложные высказывания были не только грамматически неправильными, но и вообще невыразимыми!

Развивая эту мысль в другом направлении, можно представить себе программу высшего уровня, создающую произвольные коаны. Почему бы и нет? Такая грамматика соответствовала бы формальной системе, теоремы которой являлись коанами. И если бы у вас была подобная программа, то не могли бы вы отрегулировать ее таким образом, чтобы она порождала только подлинные коаны? Моя приятельница Марша Мередит с энтузиазмом занялась этим проектом «Искусственного Изма»; ниже приводится забавный квази-коан, один из ранних продуктов ее усилий:

МОЛОДЕНЬКОМУ МАСТЕРУ ПОНАДОБИЛАСЬ МАЛЕНЬКАЯ БЕЛАЯ КРИВАЯ ПЛОШКА «КАК МЫ МОЖЕМ НАУЧИТЬСЯ, НЕ УЧАСЬ?» — СПРОСИЛ МОЛОДОЙ МАСТЕР У ВЕЛИКОГО НЕДОУМЕВАЮЩЕГО МАСТЕРА. НЕДОУМЕВАЮЩИЙ МАСТЕР ПЕРЕШЕЛ С ТВЕРДОЙ КОРИЧНЕВОЙ ГОРЫ НА МЯГКУЮ БЕЛУЮ ГОРУ С МАЛЕНЬКОЙ КРАСНОЙ КАМЕННОЙ ПЛОШКОЙ. НЕДОУМЕВАЮЩИЙ МАСТЕР УВИДЕЛ МЯГКУЮ КРАСНУЮ ХИЖИНУ. НЕДОУМЕВАЮЩИЙ МАСТЕР ЗАХОТЕЛ ЭТУ ХИЖИНУ «ПОЧЕМУ БОДХИДХАРМА ПРИШЕЛ В КИТАЙ?» — СПРОСИЛ НЕДОУМЕВАЮЩИЙ МАСТЕР У ВЕЛИКОГО ПРОСВЕТЛЕННОГО УЧЕНИКА «ПЕРСИКИ БОЛЬШИЕ», — ОТВЕТИЛ УЧЕНИК НЕДОУМЕВАЮЩЕМУ МАСТЕРУ. «КАК МЫ МОЖЕМ НАУЧИТЬСЯ, НЕ УЧАСЬ?» — СПРОСИЛ НЕДОУМЕВАЮЩИЙ МАСТЕР У ВЕЛИКОГО СТАРОГО МАСТЕРА. СТАРЫЙ МАСТЕР УШЕЛ С БЕЛОЙ КАМЕННОЙ Г0025. СТАРЫЙ МАСТЕР ЗАБЛУДИЛСЯ.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература