Представьте себе, что в каких-то раскопках мы обнаружили некую таинственную формальную систему. Вероятно, мы опробовали бы несколько интерпретаций, пока не наткнулись бы на такую, в которой каждая теорема была бы истинной и каждая не-теорема — ложной. Однако мы можем проверить это лишь на ограниченном количестве случаев, в то время как теорем, скорее всего, бесконечное множество. Можно ли утверждать, что все теоремы выражают истину в данной интерпретации, если нам еще не известно все и о формальной системе, и об области ее интерпретации?
В таком же положении мы оказываемся, когда пытаемся при помощи типографских символов формальной системы описать фрагмент действительности, представленный натуральными числами (то-есть, неотрицательными целыми числами: 0, 1, 2,…), . Попробуем понять отношение между тем, что мы называем «истиной» в теории чисел, и тем, к чему мы можем придти путем манипуляции символами.
Для начала посмотрим, какие основания у нас существуют для того, чтобы называть одни утверждения теории чисел истинными, а другие — ложными? Сколько будет 12 умножить на 12? Любой знает, что 144. Однако многие ли из тех, кто уверенно дает этот ответ, когда-либо рисовали прямоугольник размером 12 x 12 и подсчитывали составляющие его квадратики? Большинство людей считают, что эта процедура совсем не нужна. Вместо нее в доказательство своей правоты они предлагают несколько значков на бумаге, вроде тех, что показаны ниже:
Это и будет «доказательством». Почти все верят, что если посчитать квадратики, получится 144; мало кто когда-либо усомнился в этом результате. Конфликт между двумя точками зрения становится еще заметнее, когда мы рассматриваем такую проблему, как нахождение произведения 987654321 x 123456789. Прежде всего, практически невозможно построить прямоугольник нужного размера; но хуже всего то, что, даже если бы нам и удалось таковой построить и армии людей потратили бы столетия на подсчет квадратиков, все равно конечному результату поверил бы разве что особенно доверчивый человек. Слишком велика вероятность того, что кто-нибудь обязательно что-то напутал. Возможно ли, в таком случае, узнать ответ? Да, если вы доверяете символическому процессу манипуляции числами при помощи некоторых простых законов. Этот процесс объясняют детям как способ нахождения верного ответа; при этом мало кто из них видит, какой смысл скрывается за этим арифметическим трюком. Правила, маневрирующие цифрами при умножении, основаны на нескольких основных свойствах сложения и умножения, которые считаются верными для всех чисел.
Свойства, которые я имею в виду, можно пояснить на следующем примере. Представьте, что вы выкладываете несколько палочек:
/ // // // / /
и начинаете их считать. В то же время кто-то подсчитывает эти же палочки, начиная с другого конца. Читателю, вероятно, понятно, что результат получится одинаковый. Результат подсчета не зависит от того, как этот подсчет делается. Было бы бессмысленно пытаться доказать это предположение о свойствах сложения, настолько оно первично: либо вы его понимаете, либо нет — но в последнем случае вам не поможет никакое доказательство. Из этого предположения вытекают свойства коммутативности и ассоциативности сложения (первое заключается в том, что
Встречаются люди, которые, столкнувшись с формулировкой какого-либо очевидного факта, находят удовольствие в том, что тут же пытаются доказать обратное. Я сам такой Фома Неверующий: записав свои примеры с палочками, деньгами и книгами, я сразу выдумал ситуации, в которых эти примеры перестают быть правильными. Вы, возможно, сделали то же самое. Все это я говорю к тому, чтобы показать, что числа как математическая абстракция весьма отличны от чисел, которые мы употребляем в повседневной жизни.