Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

Исчисление высказываний напоминает процесс мышления, но при этом мы не должны равнять его правила с правилами человеческой мысли. Доказательство — это нечто неформальное; иными словами — это продукт нормального мышления, записанный на человеческом языке и предназначенный для человеческого потребления. В доказательствах могут использоваться всевозможные сложные мыслительные приемы и, хотя интуитивно они могут казаться верными, можно усомниться в том, возможно ли доказать их логически. Именно поэтому мы и нуждаемся в формализации. Деривация, или вывод — это искусственное соответствие доказательства; ее назначение — достичь той же цели, на этот раз с помощью логической структуры, методы которой не только ясно выражены, но и очень просты.

Обычно формальная деривация бывает крайне длинна по сравнению с соответствующей «естественной» мыслью. Это, конечно, плохо — но это та цена, которую приходится платить за упрощение каждого шага. Часто бывает, что деривация и доказательство «просты» в дополнении друг к другу. Доказательство просто в том смысле, что каждый шаг «кажется правильным», даже если мы и не знаем точно, почему; деривация проста, потому что каждый из мириада ее шагов так прост, что к нему невозможно придраться и, поскольку вся деривация состоит из таких шагов, мы предполагаем, что она безошибочна. Каждый тип простоты, однако, привносит свой тип сложности. В случае доказательств, это сложность системы, на которую они опираются — а именно, человеческого языка; в случае дериваций, это их астрономическая длина, делающая их почти невозможными для понимания.

Таким образом, мы считаем исчисление высказываний частью общего метода для составления искусственных структур, подобных доказательствам. Однако оно лишено гибкости или всеобщности, поскольку предназначено только для работы с математическими понятиями, которые, в свою очередь, жестко определенны. В качестве довольно интересного примера давайте рассмотрим деривацию, в которой посылкой фантазии является необычная строчка: <Р Λ ~ Р>. По крайней мере, ее частичная интерпретация звучит странно. Исчисление высказываний, однако, не задумывается над интерпретациями — вместо этого, оно просто манипулирует типографскими символами, а в типографском смысле в этой строчке нет ничего необычного.

Вот фантазия с данной строчкой в качестве посылки.

  (1) [ проталкивание

  (2)   <Р Λ > посылка

  (3)   Р разделение

  (4)    разделение

  (5)   [ проталкивание

  (6)     ~Q посылка

  (7)     Р переход, строка 3

  (8)     ~~Р двойная тильда

  (9)   ] выталкивание

(10)   <~Q э ~~Р> фантазия

(11)   <~P э Q> контрапозиция

(12)   Q отделение (строчки 4, 11)

(13) ] выталкивание

(14) <<P Λ ~P> э Q> фантазия


Эта теорема имеет очень странную частичную интерпретацию:

Из P и не P вместе взятых следует Q.

Поскольку Q можно интерпретировать любым предложением, мы можем считать, что эта теорема утверждает, что «из противоречия следует что угодно»! Поэтому системы, основанные на исчислении высказываний, не могут содержать противоречий — противоречия мгновенно заражают всю систему, подобно глобальному раку.

Подход к разрешению противоречий

Это не похоже на человеческую мысль. Если вы обнаружите в своих рассуждениях противоречие; вряд ли это разрушит все здание вашего мышления. Вместо этого вы, скорее всего, попытаетесь найти те идеи или методы рассуждения, которые явились причиной противоречия. Иными словами, вы попытаетесь, насколько это возможно, выйти из ваших внутренних систем, приведших к противоречию, и попробуете их исправить. Маловероятно, что вы поднимете руки вверх и воскликнете: «Это показывает, что теперь я верю во все, что угодно!» — разве что в шутку.

В действительности, противоречия — это важный источник прогресса во всех областях жизни, и математика не является исключением. В прошлом, когда в математике обнаруживалось противоречие, математики тут же пытались найти виновную в этом систему, выйти из таковой, проанализировать ее и, если возможно, залатать прореху. Вместо того, чтобы делать математику слабее, нахождение и «починка» противоречивых систем только усиливали ее. Этот путь был долог и усеян ошибками, но в конце концов, он приносил плоды. Например, в средневековье предметом горячих споров была бесконечная последовательность

1-1 + 1-1 + 1-…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже