Крабий канон.
Диалог, основанный на одноименной пьесе из «Музыкального приношения». Оба названы так, поскольку крабы (предположительно) ходят, пятясь. Краб впервые выходит на сцену в этом Диалоге. Возможно, что это самый насыщенный словесными трюками и игрой разных уровней Диалог в книге. Гёдель, Эшер и Бах тесно переплетены в этом коротеньком Диалоге.Глава VIII: Типографская теория чисел.
Представляет расширенный вариант исчисления высказываний, так называемую «ТТЧ». В ТТЧ теоретико-численные рассуждения могут быть сведены к строгой манипуляции символами. Рассматриваются различия между формальными рассуждениями и человеческой мыслью.Приношение МУ.
В этом Диалоге вводятся несколько новых тем книги. Хотя, на первый взгляд, в нем обсуждаются дзен-буддизм и коаны, на самом деле это тонко завуалированное обсуждение теоремности и нетеоремности, истинности и ложности строчек теории чисел. Упоминается молекулярная биология — в особенности, Генетический Код. Сходство с «Музыкальным приношением» здесь только в названии и в автореферентных играх.Глава IX: Мумон и Гёдель.
Разговор идет о странных идеях дзен-буддизма. Центральная фигура — монах Мумон, автор знаменитых комментариев к коанам. В метафорическом смысле, идеи дзена напоминают определенные идеи в современной философии математики. После этого обсуждения вводится основная идея Гёделя — Геделева нумерация, и затем Теорема Гёделя впервые приводится целиком.Часть II: ЭГБ
Прелюдия...
Этот Диалог связан со следующим Оба они основаны на прелюдиях и фугах из Баховского «Хорошо темперированного клавира». Ахилл и Черепаха приносят подарок Крабу, у которого в это время в гостях Муравьед. Подарок оказывается записью «ХТК», и друзья решают сразу же ее прослушать. Во время прелюдии они обсуждают строение прелюдий и фуг, Ахилл спрашивает, каким образом лучше слушать фугу: как одно целое или как сумму разных голосов? Этот спор между холизмом и редукционизмом затем продолжается в «Муравьиной фуге».Глава X: Уровни описания и компьютерные системы.
Обсуждаются разные уровни восприятия картин, шахматных позиций и компьютерных систем. Последние затем объясняются подробно; это включает описание машинных языков, языков ассемблера, языков компилятора, операционных систем и так далее. Далее разговор переходит к другим типам сложных систем, таких как спортивные команды, ядра, атомы, погода и так далее. Возникает вопрос, как много существует промежуточных уровней, и существуют ли они вообще.…и Муравьиная фуга.
Имитация музыкальной фуги: каждый голос вступает с одним и тем же замечанием. Рекурсивный рисунок вводит тему Диалога — холизм и редукционизм. Рисунок составлен из слов, которые, в свою очередь, состоят из меньших слов и так далее На четырех уровнях этой странной картинки появляются слова «ХОЛИЗМ», «РЕДУКЦИОНИЗМ» и «МУ». Затем разговор переходит к знакомой Муравьеда; мадам Мура Вейник — разумная муравьиная колония. Обсуждаются разные уровни ее мыслительных процессов. В этом Диалоге есть множество приемов фуги, для подсказки читателю упоминаются те же самые приемы, звучащие в фуге, которую слушает четверка друзей. В конце «Муравьиной фуги», значительно измененные, появляются темы «Прелюдии».Глава XI: Мозг и мысль.
Тема этой главы — «Как физическая аппаратура мозга может порождать мысли?» Сначала описываются крупномасштабные и мелкомасштабные структуры мозга. Затем выдвигается несколько гипотез об отношении понятий к нейронной деятельности.Англо-франко-немецко-русская сюита.
Интерлюдия, состоящая из трех переводов знаменитого стихотворения «Jabberwocky» Льюиса Кэрролла.Глава XII: Разум и мысль.
Предыдущие стихотворения естественно подводят к вопросу: «Могут ли языки — или даже сам разум разноязычных людей — быть „отображены“ один на другой?» Как вообще возможна коммуникация между мозгами двух разных людей? Что между ними общего? Может ли мозг, в некоем объективном смысле, быть понят другим мозгом? Для возможного ответа используется географическая аналогия.Ария с различными вариациями.
Форма этого Диалога основана на «Гольдберг-вариациях» Баха, а его содержание имеет отношение к теоретико-численным задачам, подобным Гипотезе Гольдбаха. Основная цель этого гибрида — показать, как гибкость теории чисел опирается на тот факт, что поиски в бесконечном пространстве имеют множество вариантов. Некоторые из них оказываются бесконечными, некоторые — конечными, а другие находятся где-то посередке.