Читаем ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда полностью

Первая формула выражает свойство, которое может быть присуще какому-либо натуральному числу. Разумеется, такого числа не существует. Этот факт выражен второй формулой. Очень важно понять разницу между строчкой со свободной переменной и строчкой, в которой переменная квантифицирована. Последняя строчка — либо истинна, либо ложна. В переводе на русский язык, строчка, где есть по крайней мере одна свободная переменная, называется предикатом. Предикат — это высказывание без подлежащего (или с подлежащим, выраженным местоимением, лишенным контекста). Например, высказывания:

«является предложением без подлежащего»

«было бы аномалией»

«читается вперед и назад одновременно»

«сымпровизировал по требованию шестиголосную фугу»

являются неарифметическими предикатами. Они выражают свойства, которыми обладают или не обладают определенные предметы или существа. С тем же успехом мы могли бы добавить «подлежащее-пустышку», например, «такой-то». Строчка со свободными переменными подобна такому предикату с подлежащим-пустышкой. Например:

(S0+S0)=b

означает «1 плюс 1 равняется чему-то». Это предикат с переменной b. Он выражает свойство, которым может обладать число b. Заменяя b на различные числа, мы получили бы последовательность формул, большинство которых выражало бы ошибочные суждения. Вот еще один пример разницы между открытыми формулами и высказываниями:

Ab:Ac:(b+c)=(c+b)

Эта формула, разумеется, выражает коммутативность сложения. С другой стороны:

Ac:(b+c)=(c+b)

— это открытая формула, поскольку b здесь свободно. Она выражает свойство, которым может обладать или не обладать число b, а именно — коммутативность по отношению ко всем числам с.

Примеры перевода высказываний

Теперь наш словарь, с помощью которого мы сможем выразить все высказывания теории чисел, полон. Чтобы научиться выражать сложные утверждения Ч и, наоборот, понимать значение правильно сформированных формул, необходимо много практиковаться. Поэтому мы обратимся к шести простым высказываниям, данным в начале, и попробуем перевести их на язык ТТЧ. Кстати, не думайте, что переводы, которые вы найдете далее, единственно возможные. На самом деле, существует бесконечное множество способов выразить каждое высказывание в ТТЧ.

Начнем с последнего высказывания: «6 — четное число». Переведем его в

более примитивные понятия: «Существует число e, такое, что 2, умноженное на e, равняется 6.» Это легко перевести в нотацию ТТЧ:

Ee:(SS0*e)=SSSSSS0

Обратите внимание на необходимость квантора; недостаточно было бы написать просто:

(SS0*e)=SSSSSS0

Интерпретация последней строчки не была бы ни истинной, ни ложной; она выражает только свойство, которое может иметь число e.

Интересно, что, поскольку мы знаем, что умножение коммутативно, то вместо нашей строчки мы могли бы написать:

Ee:(e*SS0)=SSSSSS0

Таким же образом, зная, что равенство симметрично, мы могли бы поменять местами стороны этого равенства:

Ee:SSSSSS0=(SS0*e)

Эти три перевода высказывания «6 — четное число» дают три различные строчки; при этом совершенно не очевидно, что теоремность каждой из них связана с теоремностью остальных. (Совершенно так же тот факт, что строчка -p--r--- была теоремой, почти не соотносился с фактом, что ее «эквивалентная» строчка --p-r--- также была теоремой. Эквивалентность — у нас в голове, так как мы, люди, автоматически думаем об интерпретациях формул, а не об их структурных особенностях.)

С высказыванием 2: «2 не является квадратом» мы расправимся быстро:

~Eb:(b*b)=SS0

Однако здесь мы снова сталкиваемся с двусмысленностью. А что, если бы мы записали эту формулу по-другому?

Ab:~(b*b)=SS0

Интерпретация первой строчки — «Не существует такого числа b, квадрат которого равнялся бы 2»; вторая строчка читается как «Для всех чисел b неверно, что квадрат b равняется 2». Для нас эти строчки представляют одно и то же понятие — однако для ТТЧ это совершенно разные строчки.

Посмотрим теперь на высказывание 3: «1729 — сумма двух кубов». Тут нам понадобятся два квантора один за другим, вот так:

Eb:Ec:SSSSSS.....SSSSS0=(((b*b)*b)+((c*c)*c))

.          |--1729 раза--|

Есть несколько альтернатив этой записи: можно переменить порядок кванторов — сменить переменные на d и e; переменить порядок слагаемых; записать умножение по-иному и т. д., и т. п. Однако я предпочитаю следующие два варианта перевода:

Eb:Ec:(((SSSSSSSSSS0*SSSSSSSSSS0)*SSSSSSSSSS0)+((SSSSSSSSS0*SSSSSSSSS0)*SSSSSSSSS0))=(((b*b)*b)+((c*с)*с))

и

Eb:Ec:(((SSSSSSSSSSSS0*SSSSSSSSSSSS0)*SSSSSSSSSSSS0)+((S0*S0)*S0))=(((b*b)*b)+((c*c)*c))

 Понимаете, почему?

Трюки ремесла

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже