Читаем Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? полностью

Бор пригласил Шрёдингера обсудить интерпретацию квантовой механики. Как вспоминал Гейзенберг, спор между учеными начался уже на вокзале Копенгагена и продолжался каждый день с утра до позднего вечера. Шрёдингер жил в доме Бора, и укрыться от дискуссий ему было некуда. И даже когда он, заболев, провел несколько дней в постели, Бор сидел у изголовья и продолжал спор. Позже Бор не раз вспоминал, как эта встреча повлияла на развитие его взглядов. После отъезда измученного Шрёдингера интерпретация квантовой механики стала главной темой бесед Бора и Гейзенберга на следующие несколько месяцев. Эти беседы были посвящены корпускулярно-волновому дуализму.

Вы уже знаете, что отправной точкой при создании матричной механики было представление об электроне как о частице, отправной точкой волновой механики – представление об электроне как о волне. Обе модели непротиворечивы и эквивалентны с математической точки зрения, однако это не помогало определить, что же такое электрон – частица или волна. Бор настаивал на том, что эти взаимоисключающие модели могут существовать одновременно, и считал, что они необходимы для полного описания физических явлений на атомном уровне. Продолжительные дискуссии совершенно вымотали и Бора, и Гейзенберга, и в конце февраля Бор отправился в отпуск в Норвегию. Вскоре после этого Гейзенберг открыл свои знаменитые неравенства.

В марте 1927 года ученый пишет в Копенгагене еще одну, крайне важную статью «О наглядном содержании квантовотеоретической кинематики и механики», где приводит соотношения, описывающие принцип неопределенности. Основная идея статьи приводилась в ее начале:

«Если мы хотим себе уяснить, что следует понимать под словом «положение объекта», например электрона (по отношению к заданной системе отсчета), необходимо указать определенные эксперименты, при помощи которых намереваются определить «положение электрона»; в противном случае это слово не имеет смысла».

Гейзенберг писал, что смысл физической теории заключен не в математических уравнениях, а в новых понятиях и их значении. До начала XX века основу физики составляла классическая механика Ньютона. В теории относительности были переопределены понятия пространства, времени и массы и продемонстрированы их ограничения при скоростях, сравнимых со скоростью света. Согласно Гейзенбергу, похожие изменения происходят и в том случае, если рассматривать объекты малой массы, которые перемещаются на очень малые расстояния, в частности электроны атомов.

Неопределенность и классические волны

На рисунке 1 показана волна, описываемая уравнением вида cos (2πk0(х–х0)), волновое число равно k0. Следовательно, ее неопределенность равна Δk = 0. Волна определена на всем пространстве, поэтому можно сказать, что она имеет бесконечную пространственную неопределенность Δх = oo.

На среднем рисунке изображена суперпозиция пяти волн, волновое число которых, k, очень близко к k0 . Эти волны изображены серым цветом, результирующая волна – черным. Из-за интерференции эта волна выглядит не так, как волна, изображенная вверху: в одних точках ее амплитуда увеличивается, в других – уменьшается. Рассмотрим суперпозицию бесконечного числа волн и присвоим каждой из них определенный вес, задаваемый гауссовой функцией

Перейти на страницу:

Похожие книги