Копенгагенская интерпретация основывается на трех базовых принципах: принципе дополнительности, вероятностной трактовке волновых функций и принципе неопределенности Гейзенберга. Мы уже упоминали о двух последних, поэтому скажем несколько слов о принципе дополнительности. Бор говорил, что классическая теория подтверждается результатами экспериментов, проведенных с помощью измерительных приборов: весов, термометров, вольтметров и др. При изучении материи на атомном уровне классическая теория достигла предела, и для описания явлений в этом масштабе потребовалось применить законы квантовой механики. Бор подчеркнул, что квантовая механика изменила классическую физику, однако ее корректность подтверждается все теми же измерительными приборами. Иными словами, хотя квантовые явления представляют собой нечто принципиально новое, показания приборов по-прежнему трактуются согласно принципам классической физики, так как, по выражению Бора, только классическая физика представляет собой «язык, лишенный двусмысленности». При описании результатов наблюдений в ее терминах можно избежать логических парадоксов, вызванных корпускулярноволновым дуализмом. Понятия частицы и волны, определенные в классической физике, являются взаимоисключающими, однако в квантовой физике без них нельзя обозначить свойства объекта, который ведет себя как частица или как волна в зависимости от проводимого эксперимента. Следовательно, эти понятия дополняют друг друга. Принцип дополнительности действует не только для частиц и волн, но и, например, для положения и скорости квантового объекта.
Эйнштейн в числе прочих физиков не был готов согласиться с этим выводом, и его дискуссии с Бором, посвященные данным вопросам, оказались крайне продуктивными. Эйнштейн описал мысленные эксперименты (то есть возможные логически, но нереализуемые на практике из-за технических ограничений), которые доказывали некорректность интерпретации Бора, однако Бор неизменно опровергал все возражения оппонента. Больше всего проблем вызвал так называемый парадокс Эйнштейна – Подольского – Розена, опубликованный в 1935 году. Представьте себе две частицы, которые появились в одной точке и начали движение в противоположных направлениях, например в результате распада какой-либо частицы. Импульсы этих частиц равны и имеют противоположные направления. Если мы измерим положение одной частицы и импульс другой в момент, когда они настолько удалены друг от друга, что какое-либо взаимодействие между ними отсутствует, то сможем одновременно определить обе эти величины для каждой из частиц по отдельности. Следовательно, принцип Бора, согласно которому одновременно измерить эти величины с произвольной точностью нельзя, не выполняется.
В свое время заголовки некоторых газет гласили, что Эйнштейн обрушился с нападками на квантовую теорию, однако журналисты не поняли сути вопроса: речь шла не о корректности квантовой механики как таковой, а о ее интерпре-
Фрагмент письма Гейзенберга к Паули от 23 февраля 1927 года, где изложены основы принципа неопределенности, который является частью копенгагенской интерпретации.
Гейзенберг и Бор (на фотографии внизу) с Максом Борном были основными носителями копенгагенского духа.
тации и связанных с этим философских проблемах. В целом эти вопросы крайне важны с концептуальной точки зрения, однако не интересуют большинство физиков, так как не имеют отношения к исследованиям. Как правило, ученые увлекаются проблемами, позволяющими делать прогнозы, истинность которых либо подтверждается экспериментально, либо следует из непротиворечивости самой теории.
У Бора больше, чем у кого-либо другого, я научился этой новой теоретической физике, которая была едва ли более экспериментальной, чем математика. […] Здесь важно найти нужные слова и понятия, чтобы описать любопытную физическую ситуацию, крайне сложную для понимания.
Эксперимент, проведенный в 1982 году Аленом Аспектом, Жаном Далибаром и Жераром Роже, изменил все. Он подтвердил самые парадоксальные прогнозы квантовой механики, и это заставило некоторых сказать: метафизика стала экспериментальной. Кроме того, был сделан шаг к развитию квантовой информатики, одним из истоков которой можно назвать парадокс Эйнштейна – Подольского – Розена.
Принцип, соотношение или неравенство? Неопределенность, неточность, недетерминированность? Различные сочетания этих слов обозначают одно и то же, что приводит к путанице. Этой путаницы можно избежать, если использовать наиболее нейтральное словосочетание – неравенства Гейзенберга.