Читаем Гельголанд. Красивая и странная квантовая физика полностью

Это весьма забавное уравнение – оно гласит, что результат умножения положения на скорость отличается от результата умножения скорости на положение. Если бы положение и скорость были числами, то результат умножения был бы одинаковым, потому что семью девять равно девятью семь. Но положение и скорость теперь таблицы чисел, а при умножении таблиц важен порядок сомножителей. Новое уравнение определяет значение разности произведения двух величин при перестановке сомножителей.

Оно короткое, очень простое и при этом непонятное.

Не пытайтесь постичь его смысл: по этому поводу до сих пор ожесточенно спорят ученые и философы. Позже я немного поговорю о содержании этого уравнения. Но сейчас просто приведу его, потому что это – сердце квантовой механики и без него нельзя завершить знакомство с этой теорией. Вот оно:


XP − PX = iℏ.


И это все. X означает положение частицы, а P – ее скорость, умноженную на массу (физики называют это «количеством движения»). Буква i – это математический символ, означающий квадратный корень из минус единицы, а ℏ, как мы уже знаем, – это постоянная Планка, деленная на 2π.

В некотором смысле Гейзенберг с компанией дополнили физику одним лишь этим простым уравнением, а все остальное – просто его следствие. Из этого уравнения вышли и квантовые компьютеры, и атомная бомба.

Но при невероятно простой форме уравнения смысл его оказался совершенно непонятным. Квантовая теория предсказывает дискретность, переходы, фотоны и все остальное через добавление к классической физике одного-единственного уравнения из восьми символов. Уравнения, которое гласит, что результат умножения положения на скорость отличается от результата умножения скорости на положение. Полный мрак. Похоже, Мурнау не просто так выбрал остров Гельголанд для съемки сцен «Носферату».

* * *

В 1927 году Нильс Бор проводит на озере Комо конференцию, на которой излагает все, что он понял (или не понял) в новой квантовой теории, и объясняет, как эту теорию следует применять33. В 1930 году Дирак написал книгу с блестящим изложением формальной структуры новой теории34. Это и сейчас лучшее пособие для изучения квантовой механики. Через два года величайший математик того времени фон Ньюмен в своей великолепной работе по математической физике навел порядок в формальных аспектах теории35.

Создание теории было отмечено беспрецедентным количеством нобелевских премий – такого числа наград не удостаивалась ни одна другая теория. В 1921 году нобелевская премия была присуждена Эйнштейну за объяснение фотоэффекта посредством квантов света. В 1922 году премию получил Бор за найденные им закономерности строения атомов. Нобелевская премия де Бройлю была присуждена в 1929 году за гипотезу о волнах вещества. Гейзенберг удостоился нобелевской премии в 1932 году «за создание квантовой механики», Шредингер и Дирак в 1933 году – за «новые открытия» в атомной теории, Паули в 1945 году – за технический вклад в теорию, а Борн в 1954 году – за то, что понял роль вероятности (на самом деле он сделал много чего еще). Единственный, кого обошли вниманием, – это Паскуаль Йордан, несмотря на то, что Эйнштейн (совершенно справедливо) заявил, что считает его наряду с Гейзенбергом и Борном истинными творцами теории. Но Йордан показал себя слишком лояльным нацистской Германии, а люди не признают заслуги побежденных36.

Несмотря на все это признание, на оглушительный успех теории и порожденных ею технических достижений, квантовая механика остается жутко непонятной. Нильс Бор писал: «Квантового мира нет», а есть только «его абстрактное квантово-механическое описание. Неправильно думать, что физика служит для описания того, какова Природа. Физика занимается лишь тем, что мы можем сказать о Природе».

В соответствии с первоначальной догадкой Вернера Гейзенберга, теория ничего не говорит о положении любой частицы, пока мы на нее не смотрим. Она говорит нам лишь о том, чему равна вероятность обнаружения этой частицы в определенном месте в случае, если мы станем ее наблюдать.

Но откуда материальной частице знать, наблюдаем ли мы ее или нет? Самая мощная из когда бы то ни было придуманных человеком теорий остается покрытой тайной.

Часть вторая

II

Странный зверинец безумных идей,


в котором демонстрируются квантовые явления и рассказывается о том, как разные ученые и философы пытаются их понять каждый на свой лад

1. Суперпозиции

Я никак не мог выбрать, куда пойти учиться, и решение заняться физикой принял в последний возможный момент. Когда я собрался поступать в Болонский университет (тогда это еще нельзя было делать удаленно), очереди на подачу документов на разные факультеты были разной длины, а самой короткой оказалась на физический факультет, что и решило мой выбор.

Перейти на страницу:

Похожие книги

Память. Пронзительные откровения о том, как мы запоминаем и почему забываем
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем

Эта книга предлагает по-новому взглянуть на одного из самых верных друзей и одновременно самого давнего из заклятых врагов человека: память. Вы узнаете не только о том, как работает память, но и о том, почему она несовершенна и почему на нее нельзя полностью полагаться.Элизабет Лофтус, профессор психологии, одна из самых влиятельных современных исследователей, внесшая огромный вклад в понимание реконструктивной природы человеческой памяти, делится своими наблюдениями над тем, как работает память, собранными за 40 лет ее теоретической, экспериментальной и практической деятельности.«Изменчивость человеческой памяти – это одновременно озадачивающее и досадное явление. Оно подразумевает, что наше прошлое, возможно, было вовсе не таким, каким мы его помним. Оно подрывает саму основу правды и уверенности в том, что нам известно. Нам удобнее думать, что где-то в нашем мозге лежат по-настоящему верные воспоминания, как бы глубоко они ни были спрятаны, и что они полностью соответствуют происходившим с нами событиям. К сожалению, правда состоит в том, что мы устроены иначе…»Элизабет Лофтус

Элизабет Лофтус

Научная литература / Психология / Образование и наука