Читаем Генная инженерия полностью

В жарких и темных глубинах Земли когда-то в незапамятные времена родилась одинокая молекула. Это была очень простая молекула аминокислоты (одной из четырех). Она стремилась слиться с другой молекулой и нашла ее. Потом ей захотелось вырасти побольше… И так она набирала по дороге все новые и новые звенья. В конце концов получилась устойчивая единица – юная ДНК. Другие одинокие молекулы аминокислот тут же получили информацию, что из неживых они могут превратиться пусть в простое, но живое создание. Они не возражали, чтобы наша ДНК начала строить себя и повторять многократно из одиночных молекул. «Самая ранняя форма естественного отбора состояла просто в отборе стабильных форм и отбрасывании нестабильных. В этом нет ничего таинственного. Это должно было произойти по определению», – пишет Р. Докинз. Первая в мире ДНК тоже была очень устойчивой и несложной конструкцией. Именно поэтому она и смогла «самособраться» из разрозненных элементов. И ничто уже не могло повернуть этот процесс вспять. Но самое важное было не в том, что какая-то молекула родилась на необозримых пространствах первобытной планеты, а то, что эта молекула была способна воспроизводить себя во множестве копий. Р. Докинз называет это эпохальное явление рождением репликатора. «На самом деле, – пишет он, – вообразить молекулу, которая создает собственные копии, вовсе не так трудно, как это кажется сначала, да и возникнуть она должна всего один раз. Представьте себе репликатор как форму для отливки или матрицу; как большую молекулу, состоящую из сложной цепи разного рода более мелких молекул, играющих роль строительных блоков. Эти блоки в изобилии содержались в бульоне, окружавшем репликатор. Допустим теперь, что каждый строительный блок обладал сродством к другим блокам одного с ним рода. В таком случае всякий раз, когда какой-нибудь строительный блок, находившийся в бульоне, оказывался подле той части репликатора, к которому у него было сродство, он там и оставался. Прикрепляющиеся таким образом строительные блоки автоматически располагались в той же последовательности, что и блоки репликатора. Поэтому легко представить себе, что они соединялись друг с другом, образуя стабильную цепь, подобно тому, как это происходило при образовании самого репликатора. Этот процесс может продолжаться в форме постепенного наложения одного слоя на другой. Именно так образуются кристаллы. Но две цепи могут и разойтись, в этом случае получатся два репликатора, каждый из которых будет продолжать создавать дальнейшие копии». А потом их станет четыре, восемь… и так далее в геометрической прогрессии.

Итак, в первобытном Океане появилась первая ДНК… Стоп. Так считалось раньше. По всем теориям выходило, что для зарождения жизни необходима не слишком высокая температура, а также наличие воздуха и воды. Теперь, похоже, новые данные заставляют пересмотреть рецепт создания живого из неживого. Выяснилось, что ДНК способна выдержать сверхвысокие и сверхнизкие температуры. Были обнаружены живые одноклеточные организмы, превосходно чувствующие себя в кипящей воде или даже гипертермальных подземных образованиях. Точно так же пришлось признать, что ДНК не страшен космический холод, ей совсем не обязателен кислород и даже водная среда не является необходимым условием для ее выживания.

Если двадцать лет назад основной теорией происхождения жизни было «самозарождение ДНК в неглубоком теплом водоеме», сегодня принята точка зрения, что ДНК сформировала себя в подводных горячих ключах. Но все больше ученых склоняются к мнению, что жизнь во Вселенной рассыпана в буквальном смысле слова: она несется на крошках-метеоритах, содержится в звездной пыли в виде простейших аминокислот.

Совсем недавно физики обратили внимание, что аминокислоты как бы закручены в левую сторону, и предположили, что родина аминокислот – в далеком космосе. Может быть, это кометы, наполненные водой. Проходя сквозь межзвездные пылевые облака, кометы попадали в зону резко поляризованного света звезд, являющегося к тому же левосторонним. Этот свет и создал левозакрученные аминокислоты. А потом метеориты – куски комет – принесли аминокислоты на молодую и горячую Землю. Между прочим, климат, в котором образовались первые аминокислоты, никак не назовешь мягким или даже умеренным. Аминокислоты, родившиеся в космосе, были проверены специальными химическими тестами, и выяснилось, что они образовались при исключительно низких температурах – намного ниже температуры замерзания воды.

Американские ученые Макс Бернстайн и Джейсон Дворкин с коллегами из НАСА провели подтверждающий эту гипотезу эксперимент. Они смоделировали пылевые межзвездные облака, а потом эти частицы оледенелой пыли вдували в вакуумную камеру со сверхнизкой температурой и подвергали облучению искусственным звездным светом. Проверив через некоторое время частицы, обнаружили все те четыре аминокислоты, из которых сложена жизнь на нашей планете. Почему? Отметьте тот факт, что в эксперименте жидкой воды не было (при такой низкой температуре это и невозможно).

Перейти на страницу:

Похожие книги

Knowledge And Decisions
Knowledge And Decisions

With a new preface by the author, this reissue of Thomas Sowell's classic study of decision making updates his seminal work in the context of The Vision of the Anointed. Sowell, one of America's most celebrated public intellectuals, describes in concrete detail how knowledge is shared and disseminated throughout modern society. He warns that society suffers from an ever-widening gap between firsthand knowledge and decision making — a gap that threatens not only our economic and political efficiency, but our very freedom because actual knowledge gets replaced by assumptions based on an abstract and elitist social vision of what ought to be.Knowledge and Decisions, a winner of the 1980 Law and Economics Center Prize, was heralded as a "landmark work" and selected for this prize "because of its cogent contribution to our understanding of the differences between the market process and the process of government." In announcing the award, the center acclaimed Sowell, whose "contribution to our understanding of the process of regulation alone would make the book important, but in reemphasizing the diversity and efficiency that the market makes possible, [his] work goes deeper and becomes even more significant.""In a wholly original manner [Sowell] succeeds in translating abstract and theoretical argument into a highly concrete and realistic discussion of the central problems of contemporary economic policy."— F. A. Hayek"This is a brilliant book. Sowell illuminates how every society operates. In the process he also shows how the performance of our own society can be improved."— Milton FreidmanThomas Sowell is a senior fellow at Stanford University's Hoover Institution. He writes a biweekly column in Forbes magazine and a nationally syndicated newspaper column.

Thomas Sowell

Экономика / Научная литература / Обществознание, социология / Политика / Философия