Когда сравнивали мРНК и соответствующий белок, то действительно обнаруживали непрерывность их нуклеотидных и аминокислотных последовательностей. То же наблюдали и при сопоставлении последовательностей аминокислот в белках и нуклеотидов в геномах вирусов. Однако с появлением возможности секвенировать протяженные участки ДНК (т. е. непосредственно генов) как у некоторых вирусов, так и у высших организмов получили совершенно неожиданные результаты. Внутри нуклеотидных последовательностей ДНК, кодирующих белок, были обнаружены какие-то иные, ничего не кодирующие участки. Чудеса, да и только! В чем же дело? Оказалось, что многие гены «расчленены» на отдельные куски. Одни из этих кусков, как и положено, кодируют белок (их назвали экзонами
), а другие никакие белки кодировать не способны (их назвали интронами) и расположены между экзонами. Таким образом, в гене кодирующие и не кодирующие участки перемежаются друг с другом (рис. 18). Так устроено большинство белок-кодирующих генов. Хотя имеются и исключения. В этих случаях говорят, что ген устроен из одного экзона и интронов не содержит.Рис. 18
. Схематическое изображение экзон-интронного строения некоторых генов человека. Экзоны — прямоугольнники, интроны — линии между прямоугольниками. Темные прямоугольники — участки генов, кодирующие белок, белые прямоугольники в первом и последнем экзонах — специальные участки гена, кодирующие мРНК, но не кодирующие белокТакое разорванное (экзон-интронное) строение оказалось характерным для подавляющего большинства (хотя и не для всех) генов человека. Вместе с тем у большинства простейших организмов интроны не обнаружены.
Размеры интронов часто значительно превышают размеры экзонов, что существенно увеличивает общую длину нуклеотидных последовательностей ДНК, образующих ген. При этом в геноме человека интроны в целом существенно длиннее, чем у других организмов.
Каким же образом разорванный ДНКовый текст реализуется в клетках в виде неразорванного РНКового, а затем белкового? Выяснилось, что первоначально при транскрипции гена синтезируется большой РНК-предшественник, копия ДНКового текста (с экзонами и интронами вместе). Далее в результате работы специфических ферментов происходит нарезание РНК-предшественника на куски. Те из них, которые ничего не кодируют (интроны), отбрасываются, а кодирующие куски (экзоны) соединяются между собой, обычно в том же порядке, как они располагались исходно в ДНК. В результате формируется зрелая молекула мРНК. Этот сложный процесс и получил название сплайсинга
(рис. 19).Рис. 19
. Образование молекул мРНК на РНК-предшественнике в результате сплайсинга. Из РНК-предшественника вырезаются фрагменты, синтезированные с интронных последовательностей гена, а участки, синтезированные на экзонах, соединяются друг с другом, что в конечном итоге приводит к формированию зрелой функционально активной мРНКВ интронах содержатся особые сигналы, которые узнаются специальными ферментами, осуществляющими сплайсинг. Так, в 98 % случаев интроны начинаются с динуклеотида ГТ, а заканчиваются динуклеотидом АГ. Они-то и служат главными сигналами для правильного осуществления сплайсинга.
Во всем этом и состоит основное ноу-хау в организации генов человека и других эукариотических генов. «Лоскутное» устройство большинства генов — чрезвычайно важное эволюционное приобретение высших организмов. За счет сплайсинга в РНК может происходить соединение не только между соседними экзонными нуклеотидными последовательностями, но и между другими, отстоящими порой в гене на значительном расстоянии. Это называют альтернативным сплайсингом
(рис. 20). В геноме человека альтернативный сплайсинг характерен для более трети генов. Этому можно привести следующую аналогию: из слова «администрация» за счет удаления отдельных букв и слогов можно образовать множество совершенно разных по смыслу слов: ад, министр, амнистия, астра, нация. Существование множества альтернативных вариантов сплайсинга в конечном итоге обеспечивает появление более чем одного белка при экспрессии одного единственного гена. В частности, на гене белка тропонина человека, содержащем 18 экзонов, за счет альтернативного сплайсинга может образовываться 64 различных продукта! Сейчас подсчитано, что в среднем один ген у человека способен кодировать около 3-х разных белков. Альтернативный сплайсинг зависит от множества внутриклеточных и внешних факторов, в том числе, как показано недавно, даже от вирусного воздействия на клетку.Рис. 20
. Схематическое изображение альтернативного сплайсинга. Прямоугольниками разного оттенка обозначены экзоны, черными линиями — интроны. Показаны лишь две из множества возможных мРНК, образующихся на одном гене