В настоящее время исследования генной экспрессии часто проводятся с использованием высокоэффективных микрочипов ряда фирм. У фирмы Affymetrix они представляют собой маленькие пластинки, в микролунки которых нанесены короткие (20–25 нуклеотидов) пробы, комплементарные последовательностям исследуемых генов. При этом каждому гену соответствует несколько (10–20) таких проб. Это существенно повышает точность и воспроизводимость количественного анализа генной экспрессии. Плотность размещения проб, а следовательно количество генов, анализируемых на одном чипе, могут быть столь велики, что один такой чип способен охватить все гены человека. С таким микрочипом проводят гибридизацию меченых копий суммарной РНК клетки (кДНК). Благодаря комплементарности цепей, в каждой лунке гибридизуется отдельная фракция кДНК. Затем автоматически микрометодами определяется спектр генов, изменяющих свою экспрессию в одном типе клеток по сравнению с другим. В результате можно расписать функциональное состояния огромного числа генов на каждый конкретный момент времени в каждом определенном типе клеток.
Приведем лишь один пример. Надо было выяснить, чем отличается картина экспрессии генов в раковых клетках по сравнению с нормальными. Продукты экспрессии раковых клеток метили флуоресцентным красителем с максимумом флуоресценции в красной области спектра. Одновременно также метили продукты нормальных клеток, но красителем, максимум флуоресценции которого лежит в зеленой области спектра. Все это смешивалось и гибридизовалось с микрочипом, на котором содержались пробы для примерно 20 тыс. различных генов. Во флуоресцентном микроскопе получалась замечательная по красоте картинка (см. рис. 31 на цветной вклейке). Но расшифровать ее позволяет только специальный компьютерный анализ. В результате исследователи могут сделать довольно однозначный вывод о поведении в раковой клетке огромного числа генов и сравнить их поведение в нормальной клетке. Отсюда в конечном итоге можно прийти к пониманию молекулярных причин определенного злокачественного перерождения клетки. Результат, получаемый молекулярными генетиками с помощью микрочипа, можно сравнить с теми данными, которые дает астрономам фотография звездного неба, когда по размеру и яркости звезд они определяются происходящие в космосе события. Человеческий организм — это космос для биологов.
Рис. 31
. Общая картина гибридизации меченых флюоресцентными красителями зондов с микрочипом, изображающая спектры генов, работающих сильнее (красным цветом) или слабее (зеленым цветом) в раковых клетках по сравнению с нормальными клетками.Моделирование — важный подход к пониманию функции генов
Естественно, что ученые не всегда могут проводить испытания на живом человеческом организме. Но из этого положения есть определенный выход. Сравнения геномов простых и сложных организмов указывает на существенный консерватизм функций генов. Этот консерватизм не только демонстрирует тот факт, что жизнь на земле основана на общих принципах, но и предоставляет экспериментаторам инструмент, позволяющий, исследуя функции генов у простых организмов, делать заключения о функции генов у более сложных, включая человека. По этой причине уже давно в экспериментах стали широко использовать различные животные организмы, говоря в этих случаях о моделировании процессов, происходящих у человека. Для моделирования используются различные животные, начиная от нематоды и кончая обезьянами.
Модель — это конечно же образец, некое подобие оригинала (свирель не может заменить соловья), но она зачастую много говорит ученым о самом оригинале. При этом модель помогает решить главную проблему — понять человека, не затрагивая в экспериментах его самого. Напрашивается такая, хотя и несколько отдаленная, литературная аналогия. Это все равно, как сравнивать достоверную летопись об определенном событии и легенду или сказку, где это также отражено. Хотя сказка несет элемент фантазии, но даже в ней всегда есть намек, который «добрым молодцам урок!»