Заключая эту главу, можно сказать, что в ходе развития животных (в отличие от растений) в соматических клетках, по-видимому, происходят и случайные и закономерные изменения организации и расположения генетического материала. Изменения эти, вероятно, не очень часты и велики, но они все же могут сказываться на ходе развития. Этим, в частности, могут быть объяснены неудачи в попытках получить нормальное развитие до взрослого организма при трансплантации ядер из дифференцированных взрослых клеток. В случае с иммуноглобулинами эти изменения наступают закономерно, и смысл их очевиден. В других случаях изменения генома могут быть и случайными. Они могут не сказываться на развитии тканей и органов, где каждая отдельная клетка выполняет ограниченную функцию и может быть заменена другой клеткой. Ho эти же изменения, повторенные во всех клетках зародыша (при трансплантации ядер), делают, очевидно, полноценное развитие из ядер дифференцированных клеток редким или даже невозможным. Проблема эта, однако, требует новых, более достоверных данных.
Глава X
Что такое эпигенетическая наследственность?
В предыдущих главах мы неоднократно говорили, что запись информации в виде последовательности нуклеотидов в ДНК (или в РНК у некоторых вирусов) является единственной формой наследственности. В качестве исключения мы приводили преемственность кортикальных структур ротового аппарата у инфузорий, описанную Соннеборном. Однако существует еще один вид наследственности, занимающий в биологии значительно большее место, чем кортикальная наследственность у инфузорий. Это эпигенетическая наследственность дифференцированных клеток. Этим термином называют способность клеток сохранять свое состояние специализации и передавать его в ряду клеточных поколений.
Каждое состояние клеточной дифференцировки, как уже не раз говорилось, основано на активности и экспрессии определенного набора генов. Следовательно, эпигенетическая наследственность — это передача в ряду клеточных поколений информации о том, какие гены должны быть активны, а какие нет в данном типе клеток. Этот вид наследственности, естественно, не может быть записан в ДНК половых клеток, так как из них образуются сотни типов клеток и каждый тип отличается своей эпигенетической наследственностью. В ДНК половых клеток записана только способность клеток приобретать ту или иную эпигенетическую наследственность, но не она сама. Таким образом, этот вид наследственности как бы стоит над или вне обычной наследственности, почему ее и назвали эпи(над, вне, при)генетической.
Если сам факт существования эпигенетической наследственности не может вызывать сомнения (иногда спорят о том, называть ли это явление наследственностью или как-либо иначе), то о ее природе, о материальном носителе нет почти никаких экспериментально установленных данных. Что же касается теоретических представлений, то они могут быть сведены к двум принципиально различным схемам, которые мы назовем метаболической и структурной гипотезами.
1. Стабильность дифференцировки и эпигенетическая наследственность
Факторы, вызывающие дифференцировку, обычно действуют короткое время, в то время как само дифференцированное состояние может сохраняться гораздо дольше. Например, нервная ткань у позвоночных возникает на ранних стадиях эмбрионального развития, а высокоспециализированные нервные клетки остаются в принципе неизменными на протяжении всей жизни. Практически не изменяются и очень многие другие типы клеток взрослого организма. То, что они за месяцы и годы не изменяют своей дифференцировки, что одни гены в них сохраняют свою активность, а другие так никогда и не начинают работать, требует объяснения. Должен существовать какой- то механизм стабильности этого, а не другого дифференцированного состояния.
Еще сложнее объяснить сохранение дифференцировки у делящихся клеток. В этом случае термин «наследственность» имеет все права, так как состояние дифференцировки поддерживается в ряду клеточных поколений и количество клеток — потомков одной дифференцированной — в ходе делений часто значительно возрастает. Даже в нервной ткани клетки, прежде чем они приобретут окончательно дифференцированное состояние и потеряют способность делиться, детерминируются, становятся нейробластами и проходят несколько клеточных делений. Печень как орган начинает дифференцироваться тоже очень рано. За время эмбрионального развития и последующего роста размер печени увеличивается в тысячи раз, т. е. составляющие ее клетки должны пройти не менее 10–15 клеточных делений, оставаясь все время клетками печени.