Читаем Гены и развитие организма полностью

Оказалось, что повторяются, хотя и не в такой степени, и некоторые настоящие гены, кодирующие белки. В наибольшей степени это относится к генам гистонов: в хромосомах морского ежа каждый из них повторяется несколько сот раз. Гены многих других белков повторяются два— четыре раза.

Эти повторы в ДНК создают определенную проблему для понимания процессов эволюции. С одной стороны они должны замедлять течение эволюции. Случайная мутация, затронувшая один из повторяющихся генов, в принципе не должна подвергаться действию отбора. Так, например, мутация в одном из генов рРНК или в одном из гистоповых генов окажет очень небольшое полезное или вредное влияние на работу рибосом или ядер: ведь вся остальная, подавляющая масса рРНК или гистонов окажется неизменной. Ho если это так, то с течением времени такие «неотбираемые» мутации должны накапливаться в геноме и создавать все большие отличия между ранее одинаковыми генами. Ho в действительности таких различий нет или очень мало. Отсюда возникли предположения, которые уже нашли некоторые фактические подтверждения, о том, что в клетках существует какой-то механизм коррекции, который исправляет постоянно возникающие отличия между повторами или скорее заменяет каждый набор повторяющихся генов точными копиями одного из них. Тогда в эволюции естественный отбор сохранит лишь те организмы, у которых гены рРНК или гистонов остались неизменными пли стали «лучше», чем были.

Скорость эволюции гистонов очень мала, т. е. они чрезвычайно сходны даже у далеких видов. Это и понятно: у всех животных и растений гистоны тесно связаны с ДНК, химическая природа которой остается неизменной. Очевидно, эволюция гистонов в основном закончилась более миллиарда лет назад, когда возникли эукариоты с настоящими хромосомами. Каждое изменение в структуре гистонов настолько затрагивает все строение и функционирование хромосом, что крайне редко оказывается полезным или хотя бы безвредным.

Ho с другой стороны, повторение некоторых генов, кодирующих белки, открывает для эволюции новые возможности. Если вдоль хромосомы происходит удвоение участка ДНК и появляются два одинаковых гена, то далее один из них может выполнять свою обычную функцию, в то время как второй будет изменяться в эволюции, не нарушая работу клетки убийственным для нее образом. Таким путем, очевидно, возникли варианты одного фермента — изоферменты, а также многие различные сейчас ферменты, имеющие, однако, общие черты строения. Сравнивая порядок аминокислот в разных белках и обнаруживая их большое сходство (такие сравнения сейчас делают на ЭВМ), можно детально проследить, какой белок от какого произошел и примерно когда это было.

Хорошим примером такой молекулярной эволюции могут служить гены, кодирующие белковую часть гемоглобина — глобин. Сейчас насчитывается около десяти видов глобинов, причем одни из них отличаются друг от друга незначительно, а у других произошла замена десятков аминокислот. Большинство из них участвует в образовании гемоглобина крови, но один из них, наиболее отличающийся от других, — миоглобин находится в мышцах.

Возвращаясь к повторяющимся последовательностям ДНК, надо сказать, что сегодня мы можем удовлетворительно объяснить назначение только небольшой их части. Некоторые повторы транскрибируются, но не кодируют белки. Предполагается, что они могут играть регуляторную роль. Ho многие повторы, а их большинство, вообще не транскрибируются, и роль их неизвестна.

2. Гибриды ДНК и РНК

При отжиге смеси РНК и денатурированной ДНК происходит образование гибридных двуспиральных молекул ДНК — РНК, причем РНК гибридизуется с комплементарными ее нитями, т. е. с теми же генами, с которых она была ранее транскрибирована. Этот опыт можно ставить в двух вариантах и в зависимости от этого решать две разные задачи. Если в растворе создать большой избыток ДНК, то на нее можно собрать значительную часть мРНК и таким образом судить о количестве различных РНК: чем меньший избыток ДНК требуется, тем меньше молекул данного вида РНК приходится на один активный ген. Наоборот, если в растворе создать избыток РНК, она «закроет» все гены, на которых она была ранее транскрибирована. Если теперь определить долю ДНК, образовавшей гибриды с РНК, можно будет сказать, какая часть генов была активной на этой стадии развития.

Недостатком этих методов и большинства работ, проведенных в минувшие годы с их помощью, является то, что в обычных условиях в первую очередь происходит гибридизация повторяющихся генов, а уникальные гены, представляющие наибольший интерес, так просто не выявляются: для них необходимы, как мы знаем, очень высокие концентрации ДНК и долгое время отжига. В последующие годы появились новые методы — сначала выделяли только уникальные гены, а затем уже проводили с ними эксперименты по гибридизации.

Перейти на страницу:

Все книги серии От молекулы до организма

Темперамент. Характер. Личность
Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.

Павел Васильевич Симонов , П. В. Симонов , Петр Михайлович Ершов , П. М. Ершов

Психология и психотерапия / Психология / Образование и наука

Похожие книги

Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия