Читаем Геометрия: Планиметрия в тезисах и решениях. 9 класс полностью

§ 1. Использование формул планиметрии и тригонометрии

Решение наибольшего числа задач по планиметрии предполагает знание формул планиметрии и тригонометрии. Это прежде всего задачи на решение треугольников, нахождение различных линейных элементов в геометрических фигурах (длин медиан, биссектрис, радиусов окружностей и т. д.), определение углов.

1.1. Задачи на треугольник

При решении вычислительных задач на треугольник нужно знать следующие формулы (рис. 125):

Рис. 125.


где a, b, с – стороны треугольника;

?, ?, ? – противолежащие им углы;

r и R – радиусы вписанной и описанной окружностей;

ha, ma, la – высота, медиана и биссектриса, проведённые к стороне а;

S – площадь треугольника;

– полупериметр треугольника.

Иногда применяют формулу

а также формулу расстояния между центрами описанной и вписанной окружностей:

Примеры решения задач

1. Определите вид треугольника (остроугольный, тупоугольный или прямоугольный) со сторонами 8, 6 и 11 см (рис. 126). (1)

Рис. 126.


Решение. Обозначим больший угол треугольника через ?. Очевидно, что он лежит напротив стороны в 11 см, так как в треугольнике больший угол лежит против большей стороны. По теореме косинусов 112= 82+ 62– 2?8?6?cos ?;

cos ? = -7/32 < 0, значит, угол ? – тупой.

Можно было рассуждать и по-другому. Если бы угол ? был равен 90°, то большая сторона по теореме Пифагора равнялась бы

Удлинение стороны на 1 см автоматически увеличивает и лежащий напротив угол – он становится тупым.

Ответ: тупоугольный.


2. Основание треугольника равно 6 см, один из углов при основании равен 105°, другой – 45°. Найдите длину стороны, лежащей против угла в 45° (рис. 127). (1)

Рис. 127.


Решение. Пусть в треугольнике ABC будут АС = 6 см, ?А = 45°, ?С = 105°. Обозначим длину стороны ВС через х. Её нам и нужно найти. Воспользуемся теоремой синусов по которой:

Учитывая, что сумма углов в треугольнике равна 180°, получим:?В = 180° – ?A – ?C = 180°– 45°– 105° = 30°.

Итого

Ответ:


3. Найдите площадь треугольника со сторонами 2, ?5 и 3 (рис. 128). (1)

Рис. 128.


Решение. Можно воспользоваться формулой Герона:

В нашем случае:

Полупериметр:

Проще решить задачу можно было бы так. По теореме косинусов:

Так как площадь треугольника равна половине произведения двух сторон на синус угла между ними, то:

Ответ: ?5.


4. В треугольнике ABC, где ?ACB = 120°, проведена медиана СМ. Найдите ее длину, если АС = 6, ВС = 4 (рис. 129). (2)

Рис. 129.


Решение. Воспользуемся формулой длины медианы

У нас а = ВС = 4, b = АС = 6. Осталось найти с = АВ. Применим к треугольнику АСВ теорему косинусов: с2= АВ2= АС2+ ВС2– 2AC ? BC ? cos(?АСВ) = 62+ 42– 2 ? 6 ? 4 ? cos 120° = 36 + 16–48?(-1/2) = 76.

Ответ: ?7.


5. Найдите длины сторон АВ и АС остроугольного треугольника ABC, если ВС = 8, а длины высот, опущенных на стороны АС и ВС, равны 6, 4 и 4 соответственно (рис. 130). (2)

Рис. 130.


Решение. Единственный угол треугольника, который остался «нетронутым», угол С.

Из прямоугольного треугольника ВМС следует:

тогда

Из ?АКС:

А теперь по теореме косинусов, применённой к треугольнику ABC, получаем:

Ответ: AB = ?41; AC = 5.


6. В треугольнике, один из углов которого равен разности двух других, длина меньшей стороны равна 1, а сумма площадей квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найти длину большей стороны треугольника (рис. 131). (2)

Рис. 131.


Решение: Обозначим через ? наименьший угол в треугольнике и через ? наибольший угол. Тогда третий угол равен ? – ? – ?. По условию задачи ? – ? = ? – ? – ? (больший угол не может равняться разности двух других углов). Отсюда следует, что 2? = ?; ? = ?/2. Значит, треугольник прямоугольный. Катет ВС, лежащий против меньшего угла ?, равен по условию 1, значит, второй катет АВ равен ctg?, а гипотенуза АС равна 1/sin ?. Поэтому сумма площадей квадратов, построенных на гипотенузе и большем катете, равна:

Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и её радиус равен:

а площадь равна:

Пользуясь условием задачи, имеем уравнение:

откуда

Длина большей стороны треугольника равна

Ответ:


7. Длины сторон а, b, с треугольника равны 2, 3 и 4. Найти расстояние между центрами описанной и вписанной окружностей. (2)

Решение. Для решения задачи даже чертеж не нужен. Последовательно находим: полупериметр

Расстояние между центрами окружностей:

Ответ:


8. В треугольнике ABC величина угла ВАС равна ?/3, длина высоты, опущенной из вершины С на сторону АВ, равна ?3 см, а радиус окружности, описанной около треугольника ABC, равен 5 см. Найти длины сторон треугольника ABC (рис. 132). (3)

Рис. 132.


Решение: Пусть CD – высота треугольника ABC, опущенная из вершины С. Возможны три случая. Основание D высоты CD попадает:

1) на отрезок АВ;

2) на продолжение отрезка АВ за точку В;

3) в точку В.

По условию радиус R окружности, описанной около треугольника ABC, равен 5 см. Следовательно, во всех трех случаях:

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже