Читаем Геометрия: Планиметрия в тезисах и решениях. 9 класс полностью

3. В параллелограмме сумма двух противолежащих углов равна 132°. Найдите градусную меру каждого из этих углов.

4. На диаметре окружности построен равносторонний треугольник. Определите градусную меру дуг, на которые стороны треугольника делят полуокружность.

Билет № 13

1. Построение с помощью циркуля и линейки перпендикулярной прямой.

2. Признаки подобия треугольников (доказательство одного из них).

3. Прямоугольник вписан в окружность радиуса 5 см. Одна из его сторон равна 8 см. Найдите другие стороны прямоугольника.

4. Угол DFG вписан в окружность с центром в точке О. Найдите градусную меру ?DOG, если ?DFG = 150° (рис. 215).

Рис. 215.

Билет № 14

1. Деление отрезка пополам с помощью циркуля и линейки.

2. Теорема о средней линии треугольника.

3. Диагонали ромба равны 10 см и 24 см. Найдите стороны ромба.

4. Периметр равностороннего треугольника равен 36 см, а периметр равнобедренного – 40 см. Найдите стороны данных треугольников, если они имеют общее основание.

Билет № 15

1. Свойства параллелограмма (формулировки и примеры).

2. Теорема о внешнем угле треугольника.

3. В треугольнике AEF проведена биссектриса AD угла А, на сторонах угла от его вершины отложены равные отрезки АВ и АС. Докажите равенство треугольников BAD и CAD.

4. Около окружности описана равнобокая трапеция, у которой боковая сторона точкой касания делится на отрезки 4 см и 9 см. Найдите площадь трапеции.

Билет № 16

1. Теорема о средней линии трапеции (формулировка и пример).

2. Теорема о сумме углов выпуклого многоугольника.

3. Даны две концентрические окружности с центром в точке О. АС и BD – диаметры этих окружностей. Докажите, что ?АВО = ?CDO.

4. Один из углов равнобедренного треугольника 120°. Найдите отношение сторон этого треугольника.

Билет № 17

1. Формулы для радиусов вписанных и описанных окружностей правильного n-угольника (формулы и примеры).

2. Свойство диагоналей ромба.

3. BD – медиана равнобедренного треугольника ABC (АВ = ВС). Найдите ее длину, если периметр треугольника ABC равен 50 см, а периметр ?ABD равен 30 см.

4. Точки М, N и P лежат соответственно на сторонах АВ, ВС и АС треугольника ABC, причем MN||AC, NP||АВ. Найдите стороны четырёхугольника AMNP, если АВ = 16 см, АС = 24 см, PN: MN = 2:3.

Билет № 18

1. Формулы для радиусов вписанных и описанных окружностей правильного треугольника, правильного четырёхугольника, правильного шестиугольника (формулы и примеры).

2. Свойство диагоналей прямоугольника.

3. На сторонах угла Q отложены равные отрезки QR и QP. Через точки R и P проведена прямая. Определите ?QRP, если ?RPQ = 67°.

4. Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна его основанию.

Билет № 19

1. Формула длины окружности (формула и пример).

2. Первый признак равенства треугольников.

3. Найдите площадь квадрата, если его диагональ равна 5 см.

4. Сколько сторон имеет выпуклый многоугольник, у которого все углы равны, если сумма его внешних углов с одним из внутренних равна 468°?

Билет № 20

1. Формулы площади треугольника (формулы и примеры).

2. Признаки параллелограмма.

3. Докажите, что общая хорда двух пересекающихся окружностей перпендикулярна линии центров.

4. Средняя линия описанной около окружности трапеции равна 4. Найдите периметр трапеции.

Билет № 21

1. Формулы площади прямоугольника и параллелограмма (формулы и примеры).

2. Второй признак равенства треугольников.

3. На сколько увеличится или уменьшится длина окружности, если ее радиус увеличить на 10 см.

4. Докажите, что середины сторон равнобокой трапеции являются вершинами ромба.

Билет № 22

1. Формула площади трапеции (формула и пример).

2. Признаки равенства прямоугольных треугольников.

3. Даны точки А (1, -3) и В (2, 0). Найдите такую точку С (х, у), чтобы векторы АВ и СА были равны.

4. Точка касания окружности, вписанной в равнобедренный треугольник, делит боковую сторону на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.

Билет № 23

1. Формула площади круга (формула и пример).

2. Теорема Пифагора.

3. Докажите, что центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.

4. Найдите геометрическое место середин равных хорд окружности.

§ 2. Экзаменационный комплект № 2 (базовый уровень)

Билет № 1

1. Равенство фигур. Признаки равенства треугольников (доказательство одного из них).

2. Критерий описанного около окружности четырёхугольника (без доказательства).

3. Точка С – середина отрезка АВ. Найдите длину отрезка АС в дециметрах, если АВ = 7 м 58 см.

4. В прямоугольнике ABCD AD = 12 см, CD = 5 см, О – точка пересечения диагоналей. Найдите

5. В треугольнике ABC угол А = углу В = 75°. Найдите ВС, если площадь треугольника равна 36 см2.

Билет № 2

1. Сумма углов треугольника (с доказательством). Вывод формулы суммы углов выпуклого n-угольника.

2. Критерий вписанного в окружность четырёхугольника (без доказательства).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже