9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления
Для того, чтобы определить силу давления, будем рассматривать жидкость, которая находится в покое относительно Земли. Если выбрать в жидкости произвольную горизонтальную площадь ω, то, при условии, что на свободную поверхность действует ратм= р0, на ω оказывается избыточное давление:
Ризб = ρghω. (1)
Поскольку в (1) ρghω есть не что иное, как mg, так как hω и ρV = m, избыточное давление равно весу жидкости, заключенной в объеме hω. Линия действия этой силы проходит по центру площади ω и направлена по нормали к горизонтальной поверхности.
Формула (1) не содержит ни одной величины, которая характеризовала бы форму сосуда. Следовательно, Ризб не зависит от формы сосуда. Поэтому из формулы (1) следует чрезвычайно важный вывод, так называемый гидравлический парадокс – при разных формах сосудов, если на свободную поверхность оказывается одно и тоже р0, то при равенстве плотностей ρ, площадей ω и высот h давление, оказываемое на горизонтальное дно, одно и то же.
При наклонности плоскости дна имеет место смачивание поверхности с площадью ω. Поэтому, в отличие от предыдущего случая, когда дно лежало в горизонтальной плоскости, нельзя сказать, что давление постоянно.
Чтобы определить его, разобьем площадь ω на элементарные площади dω, на любую из которых действует давление
По определению силы давления,
причем dP направлено по нормали к площадке ω.
Теперь, если определить суммарную силу которая воздействует на площадь ω, то ее величина:
Определив второе слагаемое в (3) найдем Рабс.
Pабс = ω(p0 + hц. е). (4)
Получили искомые выражения для определения давлений, действующих на горизонтальную и наклонную
плоскости: Ризб и Рабс.
Рассмотрим еще одну точку С, которая принадлежит площади ω, точнее, точку центра тяжести смоченной площади ω. В этой точке действует сила P0= ρ0ω.
Сила действует в любой другой точке, которая не совпадает с точкой С.
10. Определение силы давления в расчетах гидротехнических сооружений
При расчетах в гидротехнике интерес представляет сила избыточного давления Р, при:
р0 = ратм,
где р0 – давление, приложенное к центру тяжести.
Говоря о силе, будем иметь в виду силу, приложенную в центре давления, хотя будем подразумевать, что это – сила избыточного давления.
Для определения Рабс воспользуемся теоремой моментов, из теоретической механики: момент равнодействующей относительно произвольной оси равен сумме моментов составляющих сил относительно той же оси.
Теперь, согласно этой теореме о равнодействующем моменте:
Поскольку при р0 = ратм, P = ρghц. е.ω, поэтому dP = ρghdω = ρgsinθldω, следовательно (здесь и далее для удобства не будем различать ризб и рабс), с учетом P и dP из (2), а также после преобразований следует:
Если теперь перенесем ось момента инерции, то есть линию уреза жидкости (ось OY) в центр тяжести ω, то есть в точку С, то относительно этой оси момент инерции центра давления точки D будет J0.
Поэтому выражение для центра давления (точка D) без переноса оси момента инерции от той же линии уреза, совпадающие с осью OY, будет иметь вид:
Iy = I0 + ωl2ц.т.
Окончательная формула для определения места расположения центра давления от оси уреза жидкости:
lц. д. = lц. г.+ I0/S.
где S = ωlц.д. – статистический момент.
Окончательная формула для lц.д. позволяет определить центр давления при расчетах гидротехнических сооружений: для этого разбивают участок на составные участки, находят для каждого участка lц.д. относительно линии пересечения этого участка (можно пользоваться продолжением этой линии) со свободной поверхностью.
Центры давления каждого из участков находятся ниже центра тяжести смоченной площади по наклонной стенке, точнее по оси симметрии, на расстоянии I0/ωlц.u.
11. Общая методика определения сил на криволинейные поверхности
1. В общем случае, это давление:
Pz = ρgWg,
где Wg – обьем рассматриваемой призмы.
В частном случае, направления линий действия силы на криволинейную поверхность тела, давления зависят от направляющих косинусов следующего вида:
Сила давления на цилиндрическую поверхность с горизонтальной образующей полностью определена. В рассматриваемом случае ось OY направлена параллельно горизонтальной образующей.
2. Теперь рассмотрим цилиндрическую поверхность с вертикальной образующей и направим ось OZ параллельно этой образующей, что значит ωz = 0.
Поэтому по аналогии, как и в предыдущем случае,
где h'ц.т. – глубина центра тяжести проекции под пьезометрическую плоскость;
h' ц.т. – то же самое, только для ωy.
Аналогично, направление определяется направляющими косинусами
Если рассмотреть цилиндрическую поверхность, точнее, объемный сектор, с радиусом γ и высотой h, с вертикальной образующей, то
ωx = hy,