Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Если бы «музыкальные автоматы» разных людей содержали бы разные «песни» и по-разному отвечали бы на одни и те же пусковые механизмы, нам не пришло бы в голову говорить о том, что этим механизмам присуще определенное значение. Однако человеческие мозги устроены так, что при равенстве остальных условий, один мозг отвечает на данный пусковой механизм почти так же, как и другой. Именно поэтому ребенок может выучить любой язык: все дети одинаково реагируют на «пусковой механизм» разных языков. Это единообразие «человеческого музыкального автомата» устанавливает общий «язык», на котором передаются рамки и внешние сообщения. Более того, если считать, что человеческий разум является лишь одним из примеров общего явления природы — появления разумных существ в самых разных ситуациях — то можно предположить, что «язык» на котором передаются рамки и внешние сообщения среди людей, является «диалектом» универсального языка, на котором могут договориться между собой любые разумные существа. В таком случае, некоторые пусковые механизмы обладали бы универсальной пусковой мощью в том смысле, что любое разумное существо отвечало бы на них примерно так же, как и мы.

Сказанное позволяет нам изменить наше описание того, где находится значение. Мы можем приписать все значения (рамку, внешнее и внутреннее) самому сообщению, поскольку сами декодирующие механизмы универсальны — иными словами, они представляют собой универсальные формы природы, возникающие в различных контекстах. Приведу конкретный пример: предположим, что кнопки «А-5» запустили одну и ту же песню на всех автоматах — и представьте также, что автоматы эти сделаны не человеком, а встречаются в природе повсеместно, как галактики или атомы углерода. В этой ситуации, пожалуй, было бы уместно назвать универсальную пусковую мощь кнопок «А-5» «присущим им значением»; кроме того, «А-5» заслуживали бы называться «сообщением» вместо «пускового механизма», и песня была бы «выявлением» внутреннего — хотя и неявного — значения этих кнопок.

Земной шовинизм

Таким образом, значение приписывается сообщению в том случае, когда это сообщение понимается одинаково представителями любой, в том числе инопланетной, цивилизации. В этом смысле оно напоминает массу, приписываемую предметам. В древности вес должен был казаться свойством, присущим самим предметам. Но, по мере того, как были лучше поняты законы тяготения, стало ясно, что вес предметов меняется в зависимости от различных гравитационных полей, действующих на данный предмет. Однако существует родственное свойство — масса; оно не варьируется в зависимости от гравитационного поля. Из этой неизменности вытекает заключение, что масса является свойством, присущим самим предметам. Если окажется, что масса тоже зависит от контекста, то нам придется пересмотреть нашу уверенность в том, что масса — свойство самих предметов. Таким же образом допустимо, что могут существовать другие типы «музыкальных автоматов» — разумных существ — которые общаются между собой при помощи сообщений, которые мы никогда бы не распознали как таковые; с другой стороны, эти существа также не могли бы распознать природу наших сообщений. В таком случае, нам пришлось бы пересмотреть наше заключение о том, что наборам символов присущее определенное значение. С другой стороны, как бы мы вообще узнали о существовании подобных созданий?

Интересно сравнить эти рассуждения о неотъемлемости значения с аналогичными рассуждениями о неотъемлемости веса. Предположим, что мы определяем вес тела как «сила, с которой тело давит вниз, находясь на планете Земля». Согласно этому определению, для силы, с которой тело давит вниз, находясь на планете Марс, мы должны использовать иной термин. Это определение делает вес неотъемлемым свойством предметов, но происходит это за счет геоцентризма — «земного шовинизма». Это что-то вроде «гринвичского шовинизма» — отказа признавать местное время на всем земном шаре, за исключением гринвичского меридиана.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное