Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

44. «Крабий канон» из «Музыкального приношения» И С Баха.

45. М. К. Эшер «Мечеть».

46. М. К. Эшер «Три мира».

47. М. К. Эшер «Капля росы».

48. М. К. Эшер «Другой мир».

49. М. К. Эшер «День и ночь».

50. М. К. Эшер «Кожура».

51. М. К. Эшер «Лужа».

52. М. К. Эшер «Рябь на воде».

53. М. К. Эшер «Три сферы II».


Часть II Триплет «EGB» отбрасывающий три тени под прямым углом.

54. М. К. Эшер «Лист Мебиуса II».

55. Пьер де Ферма.

56. М. К. Эшер «Куб с магическими лентами».

57. Идея разделения на блоки.

58. Ассемблеры компиляторы и уровни компьютерных языков.

59. Разум строится уровень за уровнем.

60. Картина «МУ».

61. М. К. Эшер «Муравьиная фуга».

62. «Скрещение» двух знаменитых имен.

63. Фотография муравьиного моста.

64. «Спираль» ХОЛИЗМ РЕДУКЦИОНИЗМ.

65. Схематическое изображение нейрона.

66. Человеческий мозг вид сбоку.

67. Ответы разных типов нейронов на различные стимулы.

68. Пересекающиеся нейронные пути.

69. Строительство моста термитами рабочими.

70. Небольшой фрагмент «семантической сети» автора.

71. М. К. Эшер «Порядок и хаос».

72. Структура безвызовной программы Блупа.

73. Георг Кантор.

74. М. К. Эшер «Сверху и снизу».

75. «Разветвление» ТТЧ.

76. М. К. Эшер «Дракон».

77. Рене Магритт «Тени».

78. Рене Магритт «Грация».

79. Вирус табачной мозаики.

80. Рене Магритт «Прекрасный пленник».

81. Самопоглощающие экраны телевизора.

82. Рене Магритт «Воздух и песня».

83. Эпименид приводящий в исполнение собственный смертный приговор.

84. Айсберг парадокса Эпименида.

85. Квайново предложение в виде куска мыла.

86. Самовоспроизводящаяся песня.

87. Типогенетический Код.

88. Третичная структура типоэнзима.

89. Таблица «прикрепительных вкусов» типоэнзимов.

90. Центральная Догма типогенетики.

91. Четыре основания, составляющих ДНК.

92. Лестничная структура ДНК.

93. Молекулярная модель двойной спирали ДНК.

94. Генетический Код.

95. Вторичная и третичная структуры миоглобина.

96. Кусок мРНК, проходящий сквозь рибосому.

97. Полирибосома.

98. Двухтретичный молекулярный канон.

99. Центральная схема.

100. Код Гёделя.

101. Бактериальный вирус Т4.

102. Заражение бактерии вирусом.

103. Морфогенетический путь вируса Т4.

104. М. К. Эшер. «Кастровалва».

105. Шриниваса Рамануян и одна из его странных индийских мелодий.

106. Изоморфизмы между натуральными числами, калькуляторами и человеческими мозгами.

107. Нейронная и символическая деятельность мозга.

108. «Выделение» высшего уровня мозга.

109. Конфликт между высокими и низкими уровнями мозга.

110. Начальная сцена Диалога с ШРДЛУ.

111. Еще один момент Диалога с ШРДЛУ.

112. Последняя сцена Диалога с ШРДЛУ.

113. Алан Матисон Тюринг.

114. Доказательство «Ослиного мостика».

115. Бесконечное дерево целей Зенона.

116. Осмысленный рассказ на арабском языке.

117. Рене Магритт. «Мысленная арифметика».

118. Процедурное представление «красного куба, на котором стоит пирамида».

119. Задача Бонгарда #51.

120. Задача Бонгарда #47.

121. Задача Бонгарда #91.

122. Задача Бонгарда #49.

123. Небольшой фрагмент сети понятий для задач Бонгарда.

124. Задача Бонгарда #33.

125. Задачи Бонгарда #85-87.

126. Задача Бонгарда #55.

127. Задача Боигарда #22.

128. Задача Бонгарда #58.

129. Задача Бонгарда #61.

130. Задача Бонгарда #70-71.

131. Схематическая диаграмма Диалога «Крабий канон».

132. Две гомологичные хромосомы, соединенные в центре центомерой.

133. «Канон Ленивца» из «Музыкального приношения» И. С. Баха.

134. Авторский треугольник.

135. М К. Эшер. «Рисующие руки».

136. Абстрактная схема «Рисующих рук» Эшера.

137. Рене Магритт. «Здравый смысл».

138. Рене Магритт. «Две тайны».

139. «Дымовой сигнал». Рисунок автора.

140. «Сон о трубке». Рисунок автора.

141. Рене Магритт. «Человеческое состояние I».

142. М. К. Эшер. «Картинная галерея».

143. Абстрактная схема «Картинной галереи» Эшера.

144. Сокращенный вариант предыдущей схемы.

145. Еще более сокращенный вариант рис. 143.

146. Еще один способ сократить рис. 143.

147. Баховский «Естественно растущий канон», играемый в тональной системе Шепарда, образует Странную Петлю.

148. Два полных цикла тональной гаммы Шепарда, в записи для фортепиано.

149. М. К. Эшер. «Вербум».

150. Чарлз Баббадж.

151. Крабья Тема.

152. Последняя страница «Шестиголосного ричеркара» из оригинала «Музыкального приношения» И. С. Баха.


Благодарность

Эта книга зрела у меня в голове около двадцати лет — с тех пор, как в тринадцать лет я задумался над тем, как я думаю по-английски и по-французски. Даже раньше по некоторым признакам уже можно было понять, в какой области лежат мои основные интересы. Помню, что когда я был совсем ребенком, для меня не было ничего интереснее, чем идея трех 3: операция, проводимая над тройкой с помощью ее самой! Я был убежден, что это тонкое наблюдение не могло прийти в голову никому другому; но однажды я все же осмелился спросить мать, что из этого получится, и она ответила: «Девять». Однако я не был уверен, что она поняла, что я имел в виду. Позже мой отец посвятил меня в тайны квадратных корней и мнимой единицы.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное