Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Муравьед: Точно, Ахилл. Муравьи сообщаются между собой достаточно, чтобы внести в их движение некоторую упорядоченность. При помощи этой минимальной связи они напоминают друг другу, что они — части одного целого и должны сотрудничать с товарищами по команде. Чтобы выполнить любую задачу, такую, например, как прокладывание тропинок, требуется множество муравьев, передающих то же сообщение друг другу в течении определенного времени. Хотя мое понимание того, что происходит в мозгу, весьма приблизительно, я предполагаю, что нечто подобное может происходить при сообщении нейронов. Не правда ли, м-р Краб, что необходимо несколько нервных клеток, передающих сигнал другому нейрону, чтобы тот, в свою очередь, передал тот же сигнал?

Краб: Совершенно верно. Возьмем, к примеру, нейроны в мозгу у Ахилла. Каждый из них принимает сигналы от нейронов, присоединенных к их «входу», и если сумма этих сигналов в какой-то момент превышает критический порог, то нейрон посылает свой собственный сигнал, идущий к другим нейронам, которые в свою очередь, могут «возбудиться»… и так далее, и тому подобное. Нейронный луч устремляется, неутомимый, по Ахиллесовой тропе, по маршруту более причудливому, чем погоня голодной ласточки за комаром. Каждый поворот и изгиб определяется нейронной структурой Ахиллова мозга, пока не вмешиваются новые послания от органов чувств.

Ахилл: Я-то думал, что сам осуществляю контроль над своими мыслями — но ваше объяснение ставит все с ног на голову, так что теперь мне кажется, что «Я» — это лишь результат комбинации всей этой нейронной структуры с законами природы. Получается, что то, что я считал «СОБОЙ» — это, в лучшем случае, побочный продукт организма, управляемого законами природы, а в худшем случае, искусственное понятие, порожденное неверной перспективой. Иными словами, после вашего объяснения я уже не уверен, кто я такой (или что я такое).

Черепаха: Чем больше мы беседуем, тем лучше вы это будете понимать. Д-р Муравьед, а что вы думаете об этом сходстве?

Муравьед: Я подозревал, что в этих разных системах происходят похожие процессы; теперь я гораздо лучше понимаю, в чем дело. По-видимому, осмысленные групповые явления, такие, например, как прокладывание тропинок, начинают происходить только тогда, когда достигается определенное критическое количество муравьев. Когда несколько муравьев собираются вместе и начинают, может быть, чисто случайно, прокладку тропы, может произойти одно из двух: либо после короткого хаотического старта их деятельность быстро сойдет на нет —

Ахилл: Когда муравьев собирается недостаточно, чтобы продолжать тропу?

Муравьед: Именно так. Однако может случиться и так, что количество муравьев достигнет критической массы и начнет расти, как снежный ком. В этом случае, возникает целая «команда», работающая над одним проектом. Это может быть прокладка тропы, или поиски пищи, или ремонт муравейника. Несмотря но то, что в малом масштабе эта схема чрезвычайно проста, в большом масштабе она может привести к весьма сложным последствиям.

Ахилл: Я могу понять общую идею порядка, по вашим словам, возникающего из хаоса, но это еще очень далеко от умения беседовать. В конце концов, порядок возникает из хаоса и тогда, когда молекулы газа беспорядочно сталкиваются друг с другом — и результатом этого бывает лишь аморфная масса, характеризуемая всего тремя параметрами: объем, давление и температура. Это очень далеко от умения понимать мир и о нем разговаривать!

Муравьед: Это подчеркивает весьма важную разницу между объяснением поведения муравьиной колонии и поведения газа в контейнере. Поведение газа можно объяснить, рассчитав статистические особенности движения его молекул. При этом не требуется обсуждать никаких высших, чем молекулы, элементов его структуры, кроме самого газа целиком. С другой стороны, в случае муравьиной колонии невозможно понять происходящие там действия без анализа нескольких уровней ее структуры.

Ахилл: А, теперь понимаю. В случае газа, всего один шаг переносит нас с низшего уровня — молекулы — на высший уровень — сам газ. Там нет промежуточных уровней. Но как возникают промежуточные уровни организованного действия в муравьиной колонии?

Муравьед: Это связано с тем, что в колонии есть несколько разных типов муравьев.

Ахилл: Кажется, я что-то об этом слышал. Это называется «касты», да?

Муравьед: Верно. Кроме царицы-матки, там есть самцы-трутни, совершенно не занимающиеся работой по поддержанию муравейника, и еще —

Ахилл: И, разумеется, там есть воины — Славные Борцы Против Коммунизма!

Краб: Гм-м-м… В этом-то я сомневаюсь, Ахилл. Муравьиная колония весьма коммунистична по своей структуре, так что ее солдатам незачем бороться против коммунизма. Правильно, д-р Муравьед?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика