Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Этот тип различения между уровнями дает нам новые аргументы в споре с Лукасом. Он основывает свои рассуждения на идее, что Гёделева Теорема по определению приложима к машинам. На самом деле, Лукас делает еще более выразительное заявление:

Теорема. Гёделя должна быть приложима к кибернетическим машинам, поскольку сама суть таких машин — в том, что они являются воплощениями формальных систем.[56]

Как мы видели, это верно на низшем уровне — уровне аппаратуры; но поскольку могут существовать и высшие уровни, это не является последним словом в данном вопросе. Лукас создает впечатление, что в имитирующих разум машинах, которые он обсуждает, имеется только один уровень, где происходит манипуляция символами. Например, Правило Отделения (называемое в его статье «Модус Поненс») было бы встроено в аппаратуру и было бы неизменной чертой подобной машины. Он идет еще дальше и сообщает, что если бы Модус Поненс не был непоколебимым столпом этих машин и его иногда можно было бы обойти, то:

Система перестала бы быть формальной логической системой, и подобная машина с трудом могла бы быть названа моделью разума.[57]

Необходимо учитывать, что многие программы, разрабатываемые специалистами по Искусственному Интеллекту, сильно отличаются от программ с жесткими правилами и наборами аксиом — программ, занятых поисками численно-теоретических истин. И все же они безусловно задуманы как «модели разума». На их высшем — «неформальном» — уровне может идти манипуляция символами, создание аналогий, забывание идей, перепутывание понятий, стирание различий и. т. д. Но это не противоречит тому, что все эта деятельность зависит от безошибочного функционирования лежащей в их основе аппаратуры, так же как мозг зависит от правильного функционирования его нейронов. Так что программы ИИ все еще являются «конкретными воплощениями формальных систем» — но они вовсе не те машины, к которым применимо преобразованное Лукасом доказательство Гёделя. Аргументы Лукаса приложимы только к их низшему уровню — уровню, на котором их интеллект, каким бы он ни был, не находится.

Лукас также показывает свой сверхупрощенный взгляд на то, как возможно представить мыслительные процессы на компьютере, когда он пишет о непротиворечивости:

Если бы мы в действительности являлись противоречивыми машинами, мы были бы довольны собственной противоречивостью и не моргнув глазом утверждали бы обе части противоречивого высказывания. Более того, мы вообще могли бы утверждать все, что угодно — но этого не происходит. Легко показать что в противоречивой формальной системе любое высказывание доказуемо.[58]

Это последнее предложение показывает, что Лукас считает, что Исчисление Высказываний должно быть по необходимости встроено в любую формальную систему, которая способна на рассуждения. В частности, он имеет в виду теорему <<Р Λ Q>. Исчисления Высказываний, явно придерживаясь ошибочного мнения, что это — неотъемлемая черта механизированных рассуждений. Однако вполне вероятно, что процессы логической мысли возникнут как следствие работы программ ИИ, вместо того, чтобы быть предварительно запрограммированными. Это именно то, что происходит с людьми! Нет причин полагать, что Исчисление Высказываний, с его жесткими правилами и довольно глупым определением непротиворечивости, которое из этих правил вытекает, возникнет в результате действия такой программы.

Фундамент ИИ

Теперь мы можем подвести итоги нашему обсуждению различия между уровнями и дать последнюю, наиболее сильную версию Тезиса Черчй-Тюринга.

ТЕЗИС ЧЁРЧА-ТЮРИНГА ВЕРСИЯ ИИ: Любые мыслительные процессы могут быть симулированы при помощи компьютерной программы, написанной на языке, равномощном Флупу (то есть языке, на котором возможно запрограммировать все частично-рекурсивные функции).

Нужно заметить, что на практике многие специалисты по ИИ верят в идею, родственную тезису Ч-Т, я называю ее Тезисом ИИ.

ТЕЗИС ИИ: По мере того, как машинный разум прогрессирует, механизм, на котором он основан, постепенно становится все ближе к механизму, на котором основан человеческий разум. Иными словами, любой разум — лишь вариация одной и той же темы, чтобы создать настоящий разум, работники ИИ должны подойти как можно ближе к низшим уровням, к механизмам мозга, если они хотят, чтобы машины обладали теми же возможностями, что и мы.

Теорема Чёрча

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика