Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Д-р Тире-Рвинога: ШРДЛУ должна сообразить, к чему относятся слова «тот» и «его», а также путем умозаключений вывести, какой именно кубик она держит.

ШРДЛУ: ПОД «ЕГО» ВЫ, ВЕРОЯТНО, ИМЕЕТЕ В ВИДУ КУБИК, КОТОРЫЙ ВЫШЕ, ЧЕМ ТОТ, ЧТО Я ДЕРЖУ.

Д-р Тире-Рвинога: «Его» могло относиться к одному из двух кубиков: к выбранному кубику или же к кубику, который держит ШРДЛУ. В ШРДЛУ запрограммированны методы для выбора между ними.

ШРДЛУ: ХОРОШО.

Д-р Тире-Рвинога: ШРДЛУ приходится положить красный кубик, чтобы взять более высокий голубой кубик.


Рис. 111. «Найди кубик выше, чем тот, что ты держишь, и положи его в коробку». (Terri Winograd, «Understanding Natural Language», стр. 9)

4. Ета Ойн: Что находится в коробке?

ШРДЛУ: ГОЛУБАЯ ПИРАМИДА И ГОЛУБОЙ КУБ.

5. Ета Ойн: На что опирается эта пирамида?

Д-р Тире-Рвинога: Раньше ШРДЛУ ответила на слова «эта пирамида», сказав «Я НЕ ПОНИМАЮ, КОТОРУЮ ПИРАМИДУ ВЫ ИМЕЕТЕ В ВИДУ.» Теперь она подразумевает, что вы имеете в виду только что упомянутую пирамиду.

ШРДЛУ: НА КОРОБКУ.

6. Ета Ойн: Сколько кубиков находится не в коробке?

Д-р Тире-Рвинога: ШРДЛУ понимает стандартные отрицания, такие как «нет» и «не», в каком бы контексте они не появлялись.

ШРДЛУ: ЧЕТЫРЕ.

7. Ета Ойн: Правда ли, что по крайней мере один из них уже, чем тот, который я попросила тебя взять?

Д-р Тире-Рвинога: Выражение «по крайней мере один из них» должно быть проанализировано по отношению к предыдущему вопросу; «тот, который» должно также относиться к кубикам. Группы существительных могут иметь сложное число, как например «по крайней мере, один», «больше трех», «ровно семь» и так далее. Память о прошлых событиях используется, чтобы понять выражение «тот, который я попросила тебя взять». Обратите внимание на сложную синтаксическую структуру, в которой слово «тот» является дополнением придаточного предложения, находящегося двумя уровнями глубже. Программа синтаксического анализа ШРДЛУ включает грамматику, обобщенно решающую такие проблемы.

ШРДЛУ: ДА. КРАСНЫЙ КУБ.

8. Ета Ойн: Он на что-то опирается?

ШРДЛУ: ДА. НА СТОЛ.

Д-р Тире-Рвинога: ШРДЛУ умеет определять, какая информация важна для собеседника, даже если тот не спрашивает об этом прямо.

9. Ета Ойн: Может ли стол брать кубики?

ШРДЛУ: НЕТ.

Д-р Тире-Рвинога: Семантические правила ШРДЛУ включают знания о том, что «брать» что-либо может только некто одушевленный, и что стол — предмет неодушевленный.

10. Ета Ойн: Может ли пирамида стоять на кубике?

ШРДЛУ: ДА.

Д-р Тире-Рвинога: Дедуктивная система ШРДЛУ находит пример подобного положения, так что она знает, что это возможно.

11. Ета Ойн: Может ли пирамида стоять на пирамиде?

ШРДЛУ: Я НЕ ЗНАЮ.

Д-р Тире-Рвинога: Этот вопрос имеет смысл, но такого примера перед ШРДЛУ нет. Она не может рассмотреть детали своих программ, несмотря на то, что от них в конечном счете зависят ее возможности.

12. Ета Ойн: Положи одну пирамиду на другую.

ШРДЛУ: Я НЕ МОГУ.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика