Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Еще один пример из повседневной жизни. Когда вы слушаете новости по радио, часто случается, что слово предоставляется иностранному корреспонденту. «Говорит Адам Зайчиков из Минска, Беларусь.» Адам, в свою очередь, включает запись местного репортера, берущего у кого-то интервью: «С вами Иван Петровский; я нахожусь недалеко от того места, где совершилось ограбление банка. Предоставляю слово главе оперативной группы…» Теперь вы уже тремя уровнями ниже. Может случиться, что и тот, у кого берут интервью, тоже включит какую-то запись. Спускаться таким образом по уровням, слушая новости — дело весьма обычное; мы даже не всегда отдаем себе отчет в том, что сообщение на одном уровне прерывается. Наше подсознание следит за этим автоматически. Может быть, это так легко для нас потому, что уровни здесь сильно отличаются друг от друга. Если бы они были схожими, мы потеряли бы ориентацию в мгновение ока.

Пример более сложной рекурсии — наш Диалог. Ахилл и Черепаха присутствовали там на каждом из нескольких различных уровней. Иногда они читали историю, в которой сами были действующими лицами. Тут было легко запутаться, и приходилось напрягать все внимание, чтобы не потерять нить. «Так, посмотрим… настоящие Ахилл и Черепаха все еще наверху, в вертолете господина Удачи — вторичные сейчас находятся в картине Эшера — а теперь они нашли ту книгу и начали читать; значит, Ахилл и Черепаха, блуждающие по звуковым дорожкам „Маленького гармонического лабиринта“, — третичны. Стоп — я, кажется, пропустил один уровень…» Чтобы уследить за рекурсией в Диалоге, нам необходим сознательный мысленный стек, подобный такому, какой изображен ниже.

Рис. 26. Диаграмма структуры Диалога «Маленький гармонический лабиринт». Вертикальные спуски — проталкивание, подъемы — выталкивание. Обратите внимание, что диаграмма напоминает структуру абзацев в Диалоге. Из нее ясно следует, что угроза Удачи так никогда и не была выполнена — Ахилл и Черепаха остались висеть между небом и землей. Некоторые читатели, возможно, придут в отчаяние от этого недовытолкутого проталкивания, в то время как другие даже глазом не моргнут. В рассказе Баховский музыкальный лабиринт тоже был оборван слишком, скоро — но Ахилл не заметил в этом ничего особенного. Нарастающее напряжение почувствовала только Черепаха.

Стеки в музыке

Говоря о «Маленьком гармоническом лабиринте», мы должны обсудить следующую идею, которая косвенно упоминалась в диалоге: мы слушаем музыку рекурсивно — в частности, мы создаем мысленный стек ключей, и каждая новая модуляция проталкивает туда новый ключ. Если развить эту идею дальше, получится, что мы хотим услышать последовательность ключей в обратном порядке — выталкивая из стека ключи один за другим, пока не дойдем до основной тональности. Это, разумеется, преувеличение, но в нем есть доля правды. Слушая музыку, любой сколько-нибудь музыкальный человек автоматически создает минимальный стек с двумя ключами. В этом «коротком стеке» содержатся основная тональность, а также ближайший «псевдоключ», тональность, в которой композитор «находится» в данный момент. (Иными словами, самый общий и самый «местный» ключи. Таким образом слушатель знает, когда достигается тоника, и испытывает от этого сильное чувство «удовлетворения». В отличие от Ахилла, он также чувствует разницу между местным разрешением напряжения — например, разрешением в псевдотонику — и глобальным разрешением. Псевдоразрешение нагнетает напряжение, вместо того, чтобы его ослабить. Оно подобно иронической шутке — совсем как спасение Ахилла от ящериц, в то время как мы знаем, что на самом деле и он, и Черепаха все еще ожидают погибели от ножа месье Удачи.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное