Рис. 32. График функции INT(x). В точках рациональных значений x функция прерывается.
Вы можете подумать, что INT слишком эфемерна, чтобы существовать в действительности, поскольку она состоит лишь из копий самой себя. Ее определение выглядит слишком круговым.
Как начинается эта функция? Где ее «исток»? Это очень интересный вопрос. Важно отметить, что, описывая INT человеку, никогда не видевшему графика этой функции, недостаточно просто сказать, что она состоит из копий себя самой. Вторая, нерекурсивная часть описания должна содержать сведения о том, где
эти копии лежат внутри графика и каким образом они деформированы по отношению к нему. Только взятые вместе, эти два аспекта INT определяют ее структуру. Точно так же, чтобы определить числа Фибоначчи, нам понадобились две строчки — одна, определяющая рекурсию, и другая, определяющая дно — первоначальные значения функции. Приведу конкретный пример: если вы замените одно из двух первоначальных значений на 3 вместо 1, то получите совершенно иную последовательность, известную под названием ряда Лукаса:
В определении INT «дну» соответствует рисунок (рис. 33а), состоящий из множества квадратов, указывающих, где
находятся копии и каким образом они деформированы. Я называю это «скелетом» INT. Чтобы построить INT на основе скелета, вы должны действовать следующим образом. Сначала для каждого квадрата надо проделать две операции: (1) вложите туда уменьшенную и изогнутую копию скелета, следуя направлению изогнутой линии внутри; (2) сотрите квадрат-рамку и линию внутри него. Закончив этот процесс для каждого квадрата первоначального скелета, вы получите вместо одного большого скелета множество скелетов-«деток». Теперь тот же процесс повторяется уровнем ниже, для каждого скелета-детки. Затем то же самое повторяется еще раз, и еще, и еще… В пределе вы приближаетесь к точному графику INT, хотя никогда его не достигаете. Снова и снова вкладывая скелет графика внутрь себя самого, вы постепенно строите график «из ничего». Но, по сути, «ничто» не было таковым — оно было рисунком.
Рис. 33 а. Скелет, на базе которого путем рекурсивной замены строится INT.
Рис. 33 б. Скелет, на базе которого путем рекурсивной замены строится график G.
Поясним сказанное на еще более впечатляющем примере: вообразите, что вы оставляете рекурсивную часть определения INT, но заменяете начальный рисунок, скелет. Вариант скелета показан на рис. 33б); также и здесь квадраты уменьшаются ближе к углам. Если вы начнете вкладывать этот скелет в себя самого снова и снова, вы получите основной график моей докторской диссертации, который я назвал Графиком G (рис. 34). (На самом деле, там также потребовались определенные сложные деформации, но основной идеей остается «самовложение».) Таким образом, График G — член семьи INT. Это дальний родственник, так как его скелет намного сложнее скелета INT; однако рекурсивные части их определений идентичны, и именно в этом заключается их родство.
Я не буду слишком долго держать вас в неведении относительно происхождения этих замечательных графиков. INT (сокращенное interchange — обмен) связан с проблемой непрерывных дробей, а еще точнее — «последовательностей ETA». В основе INT лежит идея о том, что знаки плюс и минус взаимозаменяемы для определенного вида непрерывных дробей. Отсюда следует то, что INT(INT(x
))=x. Когда x рационально, ITN(x) также рациональна; квадратичные значения x дают квадратичные значения INT(x). He знаю, верна ли эта тенденция для высших алгебраических степеней. Другим любопытным свойством INT является то, что в точках рациональных значений x функция разрывается скачками, в то время как в точках иррациональных значений x она непрерывна.
Рис. 34. График G: рекурсивный график, показывающий энергетические полосы для электронов в идеализированном кристалле, помещенном в магнитное поле. a, представляющая силу магнитного поля, изменяется вертикально от 0 до 1.Энергия показана на горизонтальной оси. Сегменты горизонтальных линий — разрешенные энергии электронов.