Читаем Гиперпространство полностью

В 1976 г. три физика — Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен из Университета штата Нью-Йорк в Стоуни-Брук — разработали теорию супергравитации, которая стала первой реалистичной попыткой построить мир из одного только «мрамора». Согласно теории суперсимметрии у всех частиц есть суперпартнеры, называемые счастицами(sparticles). Теория супергравитации физиков из Стоуни-Брук содержит всего два поля: поле гравитона со спином, равным двум (т. е. бозон), и его партнера со спином 3/2, названного гравитино(«маленькая гравитация»). Поскольку для Стандартной модели частиц недостаточно, были предприняты попытки увязать эту теорию с более сложными частицами.

Простейший способ включить в теорию супергравитации материю — записать эту теорию для 11 — мерного пространства. А чтобы записать супертеорию Калуцы-Клейна для 11 измерений, надо увеличить количество компонентов риманова тензора, который при этом становится римановым супертензором. Для того чтобы представить, как супергравитация преобразует «дерево» в «мрамор», запишем метрический тензор и посмотрим, каким образом супергравитации удается объединить поле Эйнштейна, поле Янга-Миллса и материальные поля в единое поле супергравитации (рис. 6.3). Важная особенность этой схемы заключается в том, что материя наряду с уравнениями Янга-Миллса и Эйнштейна теперь включена в то же самое 11-мерное поле супергравитации. Суперсимметрия — это симметрия, которая методом перетасовки превращает «дерево» в «мрамор» и наоборот в пределах поля супергравитации. Таким образом, все они — проявления одной и той же силы — силы супервзаимодействия. «Дерево» уже не существует как обособленная данность. Теперь оно слито с «мрамором» и образует «супермрамор» (рис. 6.4)!

Рис. 6.3. Супергравитация — это почти воплощенная мечта Эйнштейна об исключительно геометрическом методе выведения всех взаимодействий и частиц Вселенной. Для того чтобы убедиться в этом, обратите внимание: если добавить суперсимметрию к риманову метрическому тензору, он удваивается в размерах, в итоге у нас появляется риманов метрический супертензор. Новые компоненты этого супертензора соответствуют кваркам и лептонам. Разделяя риманов супертензор на компоненты, мы обнаружим, что он содержит почти все элементарные частицы и взаимодействия, какие есть в природе: теорию гравитации Эйнштейна, поля Янга-Миллса и Максвелла, кварки и лептоны. Но, поскольку в этой картине отсутствуют конкретные частицы, мы вынуждены обратиться к более эффективному набору формул — к теории суперструн.

Рис. 6.4. Благодаря теории супергравитации нам почти удалось объединить все известные взаимодействия («мрамор») с материей («дерево»). Словно элементы головоломки, они укладываются в риманов метрический тензор. Таким образом, мечта Эйнштейна почти осуществилась.

На физика Питера ван Ньювенхейзена, одного из авторов теории супергравитации, произвел глубокое впечатление скрытый смысл этого суперобъединения. Этот ученый писал, что супергравитация «способна объединить теории Великого объединения… с гравитацией и послужить созданию модели с почти полным отсутствием свободных параметров. Это уникальная теория с местной калибровочной симметрией фермионов и бозонов, самая прекрасная калибровочная теория — настолько прекрасная, что о ней следовало бы знать Природе!» [70]

Я тепло вспоминаю, как посещал лекции и выступал с докладами на многих конференциях, посвященных супергравитации. На них возникало отчетливое ощущение, будто мы приблизились к некоему важному рубежу. Хорошо помню череду восторженных тостов в честь непрекращающихся успехов теории супергравитации на одной встрече в Москве. Казалось, что теперь, по прошествии 60 лет, мы наконец осуществим мечту Эйнштейна о Вселенной из «мрамора». Некоторые из нас в шутку называли происходящее «реваншем Эйнштейна».

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука