Читаем Гиперпространство полностью

Гораздо больший интерес представляет 16-мерное компактифицированное пространство. Как мы помним, в теории Калуцы-Клейна с компактифицированным N-мерным пространством ассоциируются симметрии, почти как в случае с пляжным мячом. Значит, все колебания (или поля), определенные для N-мерного пространства, автоматически наследуют эти симметрии. Если это симметрия SUQV), тогда все вибрации в пространстве должны подчиняться симметрии SU (N)(так же, как глина наследует симметрии литьевой формы). Таким образом, теория Калуцы-Клейна может вмещать симметрии Стандартной модели. Вместе с тем можно установить, что супергравитация «слишком мала», чтобы содержать все частицы симметрий, относящихся к Стандартной модели. Этого достаточно, чтобы развенчать теорию супергравитации как реалистичную теорию материи и пространства-времени.

Но когда «принстонский струнный квартет» проанализировал симметрии 16-мерного пространства, то обнаружил, что они представляют собой чудовищно огромную симметрию, названную Е (8) x Е (8) и значительно превосходящую все предлагавшиеся ранее симметрии теорий Великого объединения [80]. Такого преимущества никто не предвидел. Оно означало, что все колебания струны будут наследовать симметрию 16-мерного пространства, которого более чем достаточно, чтобы вместить симметрию Стандартной модели.

В этом и заключается записанное математически выражение центральной темы данной книги: законы физики в высших измерениях упрощаются. В данном случае 26-мерное пространство вибраций, направленных против часовой стрелки и совершаемых гетеротической струной, дает предостаточно возможностей для объяснения всех симметрий, содержащихся и в теории Эйнштейна, и в квантовой теории. Так впервые геометрия в чистом виде дала простое объяснение причин, по которым субатомный мир неизбежно должен демонстрировать определенные симметрии, возникающие при скручивании пространства высших измерений: симметрии субатомного мира — не что иное, как остатки симметрии пространства высших измерений.

Значит, красоту и симметрию, которые мы обнаруживаем в природе, можно проследить в обратном направлении до пространства высших измерений. Например, снежинки представляют собой красивые шестиугольники, среди которых нет двух совершенно одинаковых. Эти снежинки и кристаллы унаследовали свою структуру от способа геометрического расположения их молекул. Их расположение обусловлено главным образом электронными оболочками молекул, что, в свою очередь, приводит нас к вращательной симметрии квантовой теории, которую дает О (3). Все симметрии низкоэнергетической Вселенной, которые мы видим в химических элементах, — результат симметрий, описанных Стандартной моделью, которая, в свою очередь, может быть выведена путем компактификации гетеротической струны.

В заключение скажем, что примеры симметрии, которые мы видим вокруг — от радуги до цветочных бутонов и кристаллов, — можно в конечном счете рассматривать как проявления фрагментов изначальной десятимерной теории [81]. Риман и Эйнштейн надеялись объяснить геометрическими средствами, почему взаимодействие может определять движение и природу материи. Однако они упустили из виду ключевой ингредиент взаимоотношений между «деревом» и «мрамором». Это недостающее звено — почти наверняка теория суперструн. На примере десятимерной теории струн мы видим, что геометрия струны может в конечном итоге обуславливать и взаимодействия, и структуру материи.

<p>Фрагмент физики XXI в.</p>

Учитывая колоссальную мощность симметрий теории суперструн неудивительно, что эта теория кардинально отличается от любой другой, относящейся к физике. Она была открыта, в сущности, случайно. Многие физики отмечали: если бы не эта счастливая случайность, то теорию суперструн открыли бы лишь в XXI в. Дело в том, что она представляет собой решительное отступление от всех идей, предложенных в XX в. Теория суперструн — не экстраполяция и не продолжение популярных тенденций и теорий XX в., она занимает особое положение.

В отличие от нее, общая теория относительности эволюционировала «традиционно» и последовательно. Сначала Эйнштейн сформулировал принцип эквивалентности сил гравитации и инерции. Затем он математически выразил этот принцип в гравитационной теории поля, основой которой стали поля Фарадея и метрический тензор Римана. Затем появились «классические решения», такие как черные дыры и Большой взрыв. И наконец, последний этап — современная попытка сформулировать квантовую теорию гравитации. Таким образом, общая теория относительности развивалась последовательно, проходя в своем развитии этапы от физического принципа до квантовой теории:

Геометрия —> Теория поля —> Классическая теория —> Квантовая теория.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука