Читаем Гиперпространство полностью

ССК с проектной стоимостью $11 млрд стал вожделенной целью и предметом интенсивных политических махинаций. В прошлом места для ускорителей выбирали в ходе неприкрытой политической торговли. Так, в штате Иллинойс ускоритель «Фермилаб» (Fermilaby разместили в Батавии, возле самого Чикаго, по той причине, что, согласно журналу Physics Today,президенту Линдону Джонсону требовался решающий голос сенатора от Иллинойса Эверетта Дирксона в голосовании по вопросу войны во Вьетнаме. Вероятно, подобным образом обстояло дело и с ССК. Несмотря на яростную борьбу многих штатов за возможность осуществить этот проект, мало кто удивился, когда в 1988 г. местом размещения ССК был объявлен Техас, где выросли избранный президент США и кандидат в вице-президенты от Демократической партии.

На строительство ССК были затрачены миллиарды долларов, но его так и не завершили. К ужасу сообщества физиков, в 1993 г. палата представителей проголосовала за полное прекращение работ по этому проекту. Даже мощное лобби не помогло возобновить его финансирование. С точки зрения конгресса, дорогостоящий ускоритель частиц можно было рассматривать двояко. С одной стороны, он был лакомым кусочком — объектом, обеспечивающим тысячи рабочих мест и миллиарды долларов федеральных субсидий штату, в котором его строили. С другой стороны, строительство ускорителя можно было рассматривать как напрасную трату сил и средств, не дающую никакой потребительской выгоды. В скудные времена, рассудили в конгрессе, баснословно дорогая игрушка для специалистов в области высоких энергий — непозволительная для государства роскошь. (Однако, справедливости ради, финансирование проекта ССК стоит показать в сравнении с другими. Финансирование программы «звездных войн» составляло $4 млрд в год. Примерно $1 млрд требуется для переоснащения авианосца. Один полет космического корабля многоразового использования обходится в $1 млрд. А строительство единственного бомбардировщика «стелс» В-2 — почти в $1 млрд.)

ССК потерян для нас, и все-таки что мы могли бы обнаружить с его помощью? Как минимум ученые надеялись найти редкие частицы, такие как таинственный бозон Хиггса, предсказанный Стандартной моделью [97]. Именно бозон Хиггса нарушает симметрию, следовательно, является источником массы кварков. Таким образом, мы рассчитывали, что ССК обнаружит «источник массы». Все окружающие нас предметы, которые хоть сколько-нибудь весят, обязаны своей массой бозону Хиггса.

Вместе с тем физики готовы держать пари, что с той же вероятностью ССК мог бы обнаружить редкие частицы, не относящиеся к Стандартной модели. (В качестве возможных вариантов называли «техницветные» частицы, не входящие в Стандартную модель, но очень близкие к ней, и «аксионы», способные объяснить проблему темной материи.) Но, вероятно, наиболее заманчивой была возможность обнаружения суперпартнеров — суперсимметричных партнеров обычных частиц. К примеру, гравитино — суперсимметричный партнер гравитона. Суперсимметричные партнеры кварка и лептона — скварк и слептон соответственно.

Если бы суперпартнеры в конце концов были обнаружены, у нас появился бы слабый шанс увидеть остатки самой суперструны. (Суперсимметрия, как симметрия в теории поля, впервые была открыта в рамках теории суперструн в 1971 г., еще до открытия супергравитации. Теория суперструн — по всей вероятности, единственная, в которой суперсимметрию и гравитацию можно объединить полностью самосогласованным образом.) И даже если потенциальное открытие частиц-суперпартнеров не докажет правильность теории суперструн, то по крайней мере оно заставит замолчать скептиков, утверждающих, что теория суперструн не подтверждена ровным счетом никакими физическими свидетельствами.

<p>Сигналы из космоса</p>

Так как ССК не был построен и не помог обнаружить частицы, представляющие собой низкоэнергетические резонансные колебания суперструны, остается еще одна возможность — измерить энергию космического излучения, т. е. высокоэнергетических субатомных частиц до сих пор неизвестного происхождения, скрывающихся в глубинах космоса за пределами нашей галактики. К примеру, хотя никто не знает, откуда берется космическое излучение, оно обладает энергией, значительно превосходящей ту, которую можно обнаружить в наших лабораториях.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука