Читаем Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение полностью

Взаимоотношения между физикой (основанной на физических принципах) и математикой (основанной на самосогласованных структурах) теперь очевидны: для решения физического принципа физикам может потребоваться много самосогласованных структур. Таким образом, физика автоматически объединяет многие обособленные направления математики. Если рассматривать ситуацию в таком свете, можно понять, как развиваются значительные идеи в теоретической физике. К примеру, и математики, и физики утверждают, что Исаак Ньютон — один из титанов именно в той науке, которой занимаются и они. Однако Ньютон начал изучать гравитацию не с математики. Рассматривая движение падающих тел, он пришёл к выводу, что Луна постоянно падает на Землю, но не сталкивается с ней, потому что Земля под ней искривлена; кривизна Земли компенсирует падение Луны. В результате он пришёл к постулированию физического принципа — закону всемирного тяготения.

Но поскольку решить уравнения гравитации Ньютон затруднялся, он приступил к 30-летнему процессу создания с нуля математических методов, достаточно эффективных для решения этих уравнений. По ходу дела он обнаружил множество самосогласованных структур, получивших общее название «исчисления» (calculus). В этом случае физический принцип появился первым (закон гравитации), а затем были разработаны разнообразные самосогласованные структуры, необходимые для решения (такие как аналитическая геометрия, дифференциальные уравнения, производные и интегралы). Физический принцип объединил эти разнообразные самосогласованные структуры в связный математический корпус (calculus).

Те же соображения о взаимосвязи применимы к теории относительности Эйнштейна. Он начал с физических принципов (таких как постоянство скорости света и принцип эквивалентности для гравитации), а затем нашёл в математической литературе самосогласованные структуры (группы Ли, риманов тензор, дифференциальную геометрию), благодаря которым вывел решение для этих принципов. Между делом Эйнштейн выяснил, как объединить отдельные направления математики в связную картину.

В теории струн прослеживается та же закономерность, но совершенно иным образом. Ввиду своей математической сложности теория струн связала заметно различающиеся ветви математики (поверхности Римана, алгебру Каца — Муди, супералгебры Ли, конечные группы, модулярные функции и алгебраическую топологию), удивив математиков. Как и в случае других физических теорий, она автоматически выявляет взаимосвязь между разными самосогласованными структурами. Но физический принцип, лежащий в основе теории струн, неизвестен. Физики надеются, что, как только этот принцип будет открыт, появятся и новые направления математики. Другими словами, причина, по которой теория струн до сих пор не имеет решения, заключается в том, что математику XXI в. ещё не открыли.

Один из выводов, вытекающих из этой формулировки, состоит в том, что физический принцип, объединяющий много малых физических теорий, должен автоматически объединять многие, на первый взгляд не связанные между собой направления математики. Именно эту задачу и выполняет теория струн. В сущности, из всех физических концепций теория струн объединяет наибольшее количество направлений математики в общую картину. Вероятно, одним из побочных продуктов стремления физиков к объединению станет объединение ещё и математики.

Разумеется, набор логически согласованных математических структур во много раз больше набора физических принципов. Следовательно, некоторые математические структуры, такие как теория чисел (которую некоторые математики называют самым чистым направлением своей науки), так и не вошли ни в какую физическую теорию. Кое-кто утверждает, что положение таким и останется: скорее всего, человеческий разум навсегда сохранит способность изобретать логически согласующиеся структуры, которые нельзя выразить посредством физического принципа. Но, судя по некоторым признакам, теория струн вскоре может включить теорию чисел в свою структуру.

Наука и религия

Так как теория гиперпространства выявила новую, глубинную связь между физикой и абстрактной математикой, нашлись те, кто обвинил учёных в создании новой теологии на основе математики, т. е. в том, что мы отвергли религиозную мифологию, только чтобы принять ещё более странную религию на основе искривлённого пространства-времени, симметрии частиц и расширения космоса. Если священники читают молитвы на никому не понятной латыни, то физики бормочут заумные уравнения суперструн, которых почти никто не понимает. Вера во всемогущего Бога сменилась верой в квантовую теорию и общую теорию относительности. Когда учёные возражают, что их математические «песнопения» можно проверить в лаборатории, то слышат в ответ, что измерить в лаборатории сотворение нельзя, следовательно, такие абстракции, как теория суперструн, никогда не удастся проверить.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература