Читаем Гиппократ не рад. Путеводитель в мире медицинских исследований полностью

Среднее и СКО не всегда хорошо описывают выборку, об этом надо помнить. Если распределение асимметрично, данные будут искажены. Для описания таких выборок есть медиана. Если вновь провести аналогию с геометрией, как мы делали ранее для доказательств, то медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис. 6).


Рис. 6. В треугольнике ABC отрезок AM является медианой, то есть разделяет сторону BC пополам


Аналогичную функцию медиана выполняет в статистике применительно к распределению величин. Медиана в статистике – это такое значение, которое разделяет распределение пополам, то есть половина значений распределения больше медианы, а половина – меньше (рис. 7). Мода – ещё один статистический параметр, обозначающий значение, которое встречается наиболее часто в нашей выборке.


Рис. 7. Среднее, медиана и мода. Слева направо: ассимметричное распределение, нормальное распределение и ассимметричное распределение


Как видно из рис. 7, для идеального нормального распределения среднее и медиана должны совпасть (как и в случае с равнобедренным треугольником), однако если нам нужна информация о том, какое именно значение находится в середине асимметричного распределения, медиана будет гораздо предпочтительнее. Кроме медианы, существуют так называемые процентили, наиболее часто из них используются квартили, то есть 25-й и 75-й процентили. Эти показатели показывают четверть наибольших и наименьших показателей в распределении. Сама медиана считается 50-м процентилем (рис. 8).


Рис. 8. Распределение с обозначенными минимальным и максимальным значениями, а также медианой и 25-м и 75-м процентилями


Итак, получается, что если наше распределение имеет вид идеальной гауссианы, мы легко можем оперировать параметрами распределения, но если распределение отличается от нормального, нам начинает не хватать среднего и СКО, необходимо вводить другие характеристики, такие как процентили и медиана.

Так как эти статистические характеристики наиболее понятны и просты, параметрические методы в статистике получили большую популярность. Практически ни одно исследование не обходится без их применения. Возраст, масса тела, рост, некоторые биохимические показатели – эти характеристики вполне соответствуют нормальному распределению, а значит, данные можно обрабатывать параметрикой. К параметрическим методам относятся, например, t-критерий Стьюдента, знакомый многим студентам, например по выполнению лабораторных по физике.

Критерий Стьюдента. Самый любимый и самый понятный! По сути он является частным случаем более сложного метода анализа, однако при изучении статистики рациональнее всегда начинать с изучения именно критерия Стьюдента. Данный метод позволяет нам сравнить, насколько отличаются две выборки друг от друга. В англоязычной литературе чаще называется просто t test (подозреваю, что это из-за сходства в написании Student [Стьюдент] и student [студент], что значительно усложняет поиск в Интернете).

Существует два типа t-теста:

• для независимых выборок, когда две сравниваемые группы никак друг от друга не зависят;

• парный (paired) для зависимых выборок, когда две сравниваемые группы зависят друг от друга.

Как правило, критерий применяется в тех случаях, когда испытуемых разделяют на две независимые группы, именно об этом мы и поговорим. Например, пациентов могут разделить на две группы: контрольную, которой дают плацебо, и ту, на которой испытывают реальные лекарства (экспериментальная группа). Таким образом, мы можем получить сразу много данных о каждой группе: какими были интересующие нас показатели (например уровень глюкозы в плазме крови) в группе плацебо до «лечения» и после? А в экспериментальной? Можно сравнить результаты исследований до начала активной фазы исследований и после. Тогда мы поймём, влияет ли как-то наше вмешательство на исследуемые параметры или нет.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже