Читаем Гюйгенс. Волновая теория света полностью

Гюйгенс подозревал, что разрушительная критика англичанина была частью стратегии, позволяющей выдвинуть на первое место собственный отражающий телескоп. С научной же точки зрения ему казалось, что Ньютон вводил в свою теорию слишком много «цветов», в то время как достаточно было двух: синего и желтого. В своем ответе Гюйгенсу Ньютон умерил критику преломления, но оспорил доводы о белом свете, распадающемся на пару цветов. Тогда Гюйгенс с его придворным воспитанием решил, что энтузиазм, с которым Ньютон отдавался спору, был несовместим с хорошими манерами. Через секретаря Лондонского королевского общества Генри Ольденбурга голландец объявил, что выходит из полемики: «Когда я вижу, с каким жаром он защищает свои идеи, у меня пропадает всякое желание продолжать дискуссию». Однако он отдал Ньютону должное и зачеркнул восклицание «Эврика!» в своей тетради для записей, написав рядом: «Это изобретение бесполезно по причине ньютоновской аберрации, производящей цвета».

Однако хроматическая аберрация (см. рисунок 2) не смогла уничтожить телескоп на основе линз. Около 1730 года английский адвокат и ученый-любитель Честер Мур Холл предложил новый подход, в котором комбинировал линзы разной формы из разных материалов (см. рисунок 3). Например, угол преломления света, проходящего через стекло крон, будет отличаться от угла при переходе через стекло флинт.

Публикация работ Барроу по оптике и теории Ньютона о разложении света за несколько месяцев перевернула ход 20-летних научных исследований в этой области.

Неуемное любопытство Гюйгенса и его удивительная работоспособность иногда становились главными его врагами, постоянно отвлекая ученого от цели и отдаляя момент обнародования его открытий. Но эти же качества были и его опорой. Любопытство отвлекало Гюйгенса от неудач, заставляло его видеть в них новое поле для исследований. Ученый высказался против теории цветов Ньютона, отмечая, что «даже если бы было истинным, что лучи света вначале были красными, синими и так далее, у нас осталась бы трудная задача объяснить посредством физики, в чем состоит механика этого разнообразия цветов». Это верное замечание прекрасно вписывалось в его подход к диоптрике. Геометрическая оптика переживала расцвет в годы молодости Гюйгенса, но теперь она не была способна объяснить новые явления. Впрочем, даже оставаясь в арьергарде физической науки, геометрическая оптика предоставляла ученым и ремесленникам полезные наработки. Гюйгенс использовал ее как трамплин для новых исследований. Окончательно подтолкнула его к тому, что направить свое любопытство в единое русло, физическая головоломка, пробудившая в ученом огромный энтузиазм.


ТАИНСТВЕННЫЙ КАМЕНЬ

В середине XVII века Исландия находилась под властью Дании. Весной 1668 года король Фредерик III снарядил геологическую экспедицию, которая должна была исследовать восточное побережье острова до Хельгустадира. Ее целью было собрать образцы разновидностей кальцита (который также называют исландским шпатом). Минерал имел необыкновенную прозрачность. Расмус Бартолин, профессор геометрии и медицины в Копенгагенском университете, изучил его оптические свойства и пришел к удивительному открытию. Луч света, падая на поверхность исландского шпата и проходя через кристалл, раздваивался (см. рисунок 4), и в воздушной среде эти два луча продолжали свой путь параллельно друг другу. Раздвоение лучей объясняло, почему, если смотреть через шпат, изображение также двоилось.

РИС. 4


Любопытно, что два результирующих луча вели себя по-разному. Один подчинялся закону Снелля и поэтому стал называться обычным лучом, а второй назвали необычным лучом, и его углы падения и отражения не соответствовали соотношению между синусами.

В 1671 году астроном Жан Пикар, член Королевской Академии наук, побывал в Копенгагене и захватил с собой в Париж несколько образцов шпата. Гюйгенс с присущей ему скрупулезностью подверг камни тщательному анализу и открыл явления, которые ускользнули от Бартолина. Самое удивительное происходило, когда два кристалла помещали рядом друг с другом. Вначале луч, как и следовало ожидать, двоился. Однако проходя сквозь первый камень и попадая на второй, лучи больше не разделялись. Что же происходило со светом, проходящим сквозь кальцит? Помимо отклонения, что-то, казалось, меняло его природу. Гюйгенс натолкнулся на неожиданное свойство света, которое человеческий глаз, в отличие от сверхчувствительных органов зрения многих насекомых и головоногих, не в состоянии воспринять, — речь идет о поляризации.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги