Теперь мы переходим к удивительной особенности стереоскопического восприятия глубины. Существует взаимосвязь между двумя механизмами, описанными выше: 1) конвергенцией глаз, которая служит своего рода
Если бы этого не было, отдаленные предметы казались бы ближе друг к другу по глубине, чем близкие предметы, расположенные на том же расстоянии друг ог друга, потому что диспаратность тем больше, чем ближе находятся предметы. Действие механизма координации, компенсирующего эти геометрические соотношения, довольно легко наблюдать, если нарушить конвергенцию, сохранив прежнюю диспаратность. Если заставить глаза конвергировать с помощью призмы, ориентировав их на бесконечность, и рассматривать в это время близлежащие предметы, то они воспринимаются как растянутые в глубину. Таким образом мы можем видеть нашу конвергентно-диспарационную систему компенсации в действии.
Очень остроумный эксперимент был недавно проведен Джулезом (Julesz) в лабораториях телефонной компании «Белл». Автор с помощью вычислительной машины создал пару специальных рисунков (рис. 4, 16), каждый из них представлял собой случайный набор линий и не содержал контуров знакомых предметов или структур, но, взятые вместе, они создавали структуру, обладающую глубиной.
Рис. 4, 16.
Этот тонкий эксперимент показывает, что мозговые механизмы, обеспечивающие стереоскопическое восприятие глубины, могут интегрировать наборы линий, воспринимаемые каждым глазом отдельно, синтезировать объекты из двух случайных структур и эффективно находить диспаратность. Эта методика, предложенная Джулезом, видимо, будет иметь большое значение для исследования зрительного восприятия. Она является первым примером использования электронных вычислительных машин в исследовании зрительной системы.
5. Мозг
Мозг гораздо сложнее, чём любая звезда, и еще более таинствен. Если бы мы смогли мысленно проникнуть в механизмы мозга, связанные с работой зрительной системы, мы открыли бы тайны, столь же важные, как и тайны внешнего мира, раскрытые глазом и мозгом.
Не всегда было очевидным, что мозг связан с мышлением, памятью или ощущением. В древнем мире — включая великие цивилизации Египта или Месопотамии — мозг считался несущественным органом. Мышление и эмоции рассматривались как функции желудка, печени и желчного пузыря. Отзвуки этого еще сохранились в современном языке в таких словах, как «флегматик». Когда египтяне бальзамировали умерших, они не заботились о том, чтобы сохранить мозг (его извлекали через левую ноздрю), в то время как другие органы сохранялись отдельно в специальных сосудах, которые помещались в саркофаг. После смерти мозг обычно обескровлен, и, по-видимому, он казался мало пригодным для того, чтобы быть вместилищем жизненного духа. Субстратом жизни, теплоты и чувства считалось активно пульсирующее сердце, а не холодное немое вещество мозга, заключенное в костный футляр.
Существенная роль мозга в контроле над движениями конечностей, речью и мышлением, ощущением и переживанием стала выясняться постепенно благодаря наблюдению над последствиями повреждений мозга. Позже начали тщательно изучать последствия небольших локальных поражений мозга — опухолей и огнестрельных ранений. Результаты этих исследований чрезвычайно важны для нейрохирургов, ибо если в одних областях мозга можно оперировать относительно свободно, то другие надо щадить, иначе пациент умрет или у него возникнут необратимые дефекты.
Мозг можно определить как «единственный материальный субстрат, который мы знаем изнутри». С внешней стороны это розово-серый предмет, размеры которого приблизительно равны двум сложенным кулакам. Основные части мозга показаны на рис. 5, 1. Мозг состоит из так называемого белого и серого вещества, причем белое вещество создают волокна, связывающие тела клеток, а серое образуют эти клетки.